14.下列給出函數(shù)f(x)與g(x)的各組中,是同一個(gè)關(guān)于x的函數(shù)的是(  )
A.f(x)=x-1,g(x)=$\frac{{x}^{2}}{x}$-1B.f(x)=|x|,g(x)=($\sqrt{x}$)2
C.f(x)=x,g(x)=$\root{3}{{x}^{3}}$D.f(x)=1,g(x)=x0

分析 由題意:是同一個(gè)關(guān)于x的函數(shù),即它們是同一函數(shù)即可.根據(jù)兩個(gè)函數(shù)的定義域相同,對應(yīng)關(guān)系也相同判斷即可.

解答 解:對于A:f(x)=x-1的定義域?yàn)镽,而g(x)=$\frac{{x}^{2}}{x}$-1的定義域?yàn)閧x∈R|x≠0},定義域不同,∴不是同一函數(shù);
對于B:f(x)=|x|的定義域?yàn)镽,而g(x)=($\sqrt{x}$)2的定義域?yàn)閧x|x≥0},定義域不同,∴不是同一函數(shù);
對于C:f(x)=x的定義域?yàn)镽,g(x)=$\root{3}{{x}^{3}}$=x的定義域?yàn)镽定義域相同,對應(yīng)關(guān)系也相同,∴是同一函數(shù);
對于D:f(x)=1的定義域?yàn)镽,g(x)=x0的定義域?yàn)閧x∈R|x≠0},定義域不同,∴不是同一函數(shù);
故選:C.

點(diǎn)評 本題考查了判斷兩個(gè)函數(shù)是否為同一函數(shù)的問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若實(shí)數(shù)a,b分別是方程x+lgx=6,x+10x=6的解,函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+(a+b)x+2,x≤0\\ 2,x>0\end{array}$,則關(guān)于x的方程f(x)=x的解的個(gè)數(shù)是( 。
A.3B.2C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=2+sinx,且f(0)=-1,數(shù)列{an}是以$\frac{π}{4}$為公差的等差數(shù)列,若f(a2)+f(a3)+f(a4)=3π,則$\frac{{a}_{2014}}{{a}_{2}}$=( 。
A.2016B.2015C.2014D.1013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖某幾何體的三視圖如圖所示,那么該幾何體外接球的表面積為$\frac{16}{3}π$;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知tanα=-2,則(sinα-cosα)2=$\frac{9}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={-1,1},B={x|ax+1=0},若B⊆A,求實(shí)數(shù)a所有可能取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-5|+|x-3|.
(1)求函數(shù)f(x)的最小值m;
(2)若正實(shí)數(shù)a,b滿足$\frac{1}{a}$+$\frac{1}$=$\sqrt{3}$,求證:$\frac{1}{{a}^{2}}$+$\frac{2}{^{2}}$≥m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知△ABC中,角A,B,C所對的邊分別是a,b,c,∠A=60°,c=2,且△ABC的面積為$\frac{{\sqrt{3}}}{2}$,則邊b的長為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{x}{{x}^{2}+1}$的定義域?yàn)椋?1,1),
(1)證明f(x)在(-1,1)上是增函數(shù);
(2)解不等式f(2x-1)+f(x)<0.

查看答案和解析>>

同步練習(xí)冊答案