已知橢圓數(shù)學(xué)公式的離心率數(shù)學(xué)公式,且右焦點(diǎn)F到左準(zhǔn)線的距離為3.
(1)求橢圓C的方程;
(2)已知B為橢圓C在y軸的左測(cè)上一點(diǎn),線段BF與拋物線y2=2px(p>0)交于A,且滿足數(shù)學(xué)公式,求p的最大值.

解:(1)∵的離心率,∴.①
而右焦點(diǎn)到左準(zhǔn)線之距.②
又a2=b2+c2
由①②③解之得,b=1.
從而所求橢圓方程為
(2)橢圓的右焦點(diǎn)為F(1,0),點(diǎn)B在橢圓上,
設(shè)B(x0,y0),其中,設(shè)A(xA,yA
,得(x0-xA,y0-yA)=2(xA-1,yA

由點(diǎn)A在拋物線y2=2px上,得
,

令t=x0+2,則,

.∴(當(dāng)且僅當(dāng)時(shí)取“=”).

又當(dāng)時(shí),為橢圓在y軸左側(cè)上的點(diǎn).
故p的最大值為
分析:(1)由已知離心率及點(diǎn)F到準(zhǔn)線的距離,列方程即可得a、b、c的值;(2)設(shè)B(x0,y0),A(xA,yA),利用向量相等的意義得兩點(diǎn)坐標(biāo)間的關(guān)系,分別代入橢圓和拋物線方程即可得p關(guān)于
x0的函數(shù),利用換元法求值域即可
點(diǎn)評(píng):本題考查了橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì),拋物線的標(biāo)準(zhǔn)方程,利用函數(shù)求最值的思想方法,向量在解析幾何中的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010年重慶一中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知橢圓的離心率,且右焦點(diǎn)F到左準(zhǔn)線的距離為3.
(1)求橢圓C的方程;
(2)已知B為橢圓C在y軸的左測(cè)上一點(diǎn),線段BF與拋物線y2=2px(p>0)交于A,且滿足,求p的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省濟(jì)南市高三3月高考模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,且過(guò)點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線A   C、BD過(guò)原點(diǎn)O,若,

(i) 求的最值.

(ii) 求證:四邊形ABCD的面積為定值;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省馬鞍山市高三第一次教學(xué)質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分13分)

已知橢圓的離心率,且短半軸為其左右焦點(diǎn),是橢圓上動(dòng)點(diǎn).

(Ⅰ)求橢圓方程;

(Ⅱ)當(dāng)時(shí),求面積;

(Ⅲ)求取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年云南省高三9月月考文科數(shù)學(xué)試卷 題型:解答題

已知橢圓的離心率,且橢圓過(guò)點(diǎn).

(1)求橢圓的方程;

(2)若為橢圓上的動(dòng)點(diǎn),為橢圓的右焦點(diǎn),以為圓心,長(zhǎng)為半徑作圓,過(guò)點(diǎn)作圓的兩條切線,(為切點(diǎn)),求點(diǎn)的坐標(biāo),使得四邊形的面積最大.]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省皖南八校高三第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓的離心率,且過(guò)點(diǎn)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)垂直于坐標(biāo)軸的直線l與橢圓C相交于A、B兩點(diǎn),若以AB為直徑的圓D經(jīng)過(guò)坐標(biāo)原點(diǎn).證明:圓D的半徑為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案