已知橢圓的離心率為,且過點(diǎn)

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線A   C、BD過原點(diǎn)O,若,

(i) 求的最值.

(ii) 求證:四邊形ABCD的面積為定值;

 

【答案】

(1). (2)(i)的最大值為2.  (ii)

.即,四邊形ABCD的面積為定值        

【解析】

試題分析:(1)由題意,又,              2分

解得,橢圓的標(biāo)準(zhǔn)方程為.                      4分

(2)設(shè)直線AB的方程為,設(shè)

聯(lián)立,得 

     -①

                                                    6分

  

                            7分

=                          8分

                                                    9分

(i)

當(dāng)k=0(此時(shí)滿足①式),即直線AB平行于x軸時(shí),的最小值為-2.

又直線AB的斜率不存在時(shí),所以的最大值為2.              11分

(ii)設(shè)原點(diǎn)到直線AB的距離為d,則

.

即,四邊形ABCD的面積為定值                      13分

考點(diǎn):本題考查了直線與圓錐曲線的位置關(guān)系

點(diǎn)評(píng):對(duì)于直線與圓錐曲線的綜合問題,往往要聯(lián)立方程,同時(shí)結(jié)合一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解;而對(duì)于最值問題,則可將該表達(dá)式用直線斜率k表示,然后根據(jù)題意將其進(jìn)行化簡結(jié)合表達(dá)式的形式選取最值的計(jì)算方式.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為e,兩焦點(diǎn)分別為F1、F2,拋物線C以F1為頂點(diǎn)、F2為焦點(diǎn),點(diǎn)P為拋物線和橢圓的一個(gè)交點(diǎn),若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為
1
2
,焦點(diǎn)是(-3,0),(3,0),則橢圓方程為( 。
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時(shí)直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個(gè)橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報(bào)紙,送報(bào)人可能在早上6:30-7:30之間把報(bào)紙送到你家,你父親離開家去工作的時(shí)間在早上7:00-8:00之間,請你求出父親在離開家前能得到報(bào)紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn),M是橢圓上異于A,B的任意一點(diǎn),已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點(diǎn)P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點(diǎn),求e.

查看答案和解析>>

同步練習(xí)冊答案