精英家教網 > 高中數學 > 題目詳情
1.設雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左,右焦點分別是F1,F2,點P在雙曲線上,且滿足∠PF2F1=2∠PF1F2=60°,則此雙曲線的離心率等于(  )
A.2$\sqrt{3}$-2B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{3}$+1D.2$\sqrt{3}$+2

分析 根據點P為雙曲線上一點,且∠PF1F2=30°,∠PF2F1=60°,可得|PF1|=$\sqrt{3}$c,|PF2|=c,利用雙曲線的定義,可求雙曲線的離心率.

解答 解:設雙曲線的焦距長為2c,
∵點P為雙曲線上一點,且∠PF1F2=30°,∠PF2F1=60°,
∴P在右支上,∠F2PF1=90°,
即PF1⊥PF2,|PF1|=2csin60°=$\sqrt{3}$c,|PF2|=2ccos60°=c,
∴由雙曲線的定義可得|PF1|-|PF2|=($\sqrt{3}$-1)c=2a,
∴e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1.
故選:C.

點評 本題考查雙曲線的定義、方程和性質,解題的關鍵是確定|PF1|=$\sqrt{3}$c,|PF2|=c,運用定義法和離心率公式,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

11.已知函數f(x)=ax+lnx,g(x)=x2-2x+2.若對任意x1∈(0,+∞),存在x2∈[0,1],使得f(x1)<g(x2),則實數a的取值范圍是(-∞,-$\frac{1}{{e}^{3}}$).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知圓O1:x2+2x+y2=0,圓O2:x2-2x+y2-8=0,動圓P與圓O1外切且和圓O2內切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點(1,$\frac{1}{2}$)作直線l交曲線C于A、B兩點,且點M恰好為弦AB的中點,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.在統(tǒng)計學中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學生的偏科情況,對學生數學偏差x(單位:分)與物理偏差y(單位:分)之間的關系進行學科偏差分析,決定從全班56位同學中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數據如下:
學生序號12345678
數學偏差x20151332-5-10-18
物理偏差y6.53.53.51.50.5-0.5-2.5-3.5
(1)已知x與y之間具有線性相關關系,求y關于x的線性回歸方程;
(2)若這次考試該班數學平均分為118分,物理平均分為90.5,試預測數學成績126分的同學的物理成績.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$x,
參考數據:$\sum_{i=1}^8{{x_i}{y_i}}$=324,$\sum_{i=1}^8{x_i^2}$=1256.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.20世紀70年代,流行一種游戲---角谷猜想,規(guī)則如下:任意寫出一個自然數n,按照以下的規(guī)律進行變換:如果n是個奇數,則下一步變成3n+1;如果n是個偶數,則下一步變成$\frac{n}{2}$,這種游戲的魅力在于無論你寫出一個多么龐大的數字,最后必然會落在谷底,更準確的說是落入底部的4-2-1循環(huán),而永遠也跳不出這個圈子,下列程序框圖就是根據這個游戲而設計的,如果輸出的i值為6,則輸入的n值為( 。
A.5B.16C.5或32D.4或5或32

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長分別為方程${x^2}-2({1+\sqrt{3}})x+4\sqrt{3}=0$的兩個實數根,若斜邊BC上有異于端點的E,F兩點,且EF=1,∠EAF=θ,則tanθ的取值范圍為( 。
A.$({\frac{{\sqrt{3}}}{3},\frac{{4\sqrt{3}}}{11}}]$B.$({\frac{{\sqrt{3}}}{9},\frac{{\sqrt{3}}}{3}})$C.$({\frac{{\sqrt{3}}}{9},\frac{{4\sqrt{3}}}{11}}]$D.$({\frac{{\sqrt{3}}}{9},\frac{{2\sqrt{3}}}{11}}]$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

13.△ABC中,D為線段BC的中點,AB=2AC=2,tan∠CAD=sin∠BAC,則BC=$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.已知公比為2的等比數列{an},若a2+a3=2,則a4+a5=( 。
A.$\frac{1}{2}$B.1C.4D.8

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.袋中裝有大小相同的4個紅球和6個白球,從中取出4個球.
(1)若取出的球必須是兩種顏色,則有多少種不同的取法?
(2)若取出的紅球個數不少于白球個數,則有多少種不同的取法?
(3)取出一個紅球記2分,取出一個白球記1分,若取4球的總分不低于5分,則有多少種不同的取法?

查看答案和解析>>

同步練習冊答案