分析 本題是一個等可能事件的概率,試驗發(fā)生包含的事件對應的包含的事件對應的是扇形AOB,滿足條件的事件是圓,根據題意,構造直角三角形求得扇形的半徑與圓的半徑的關系,進而根據面積的求法求得扇形OAB的面積與⊙C的面積比.
解答 解:由題意知本題是一個等可能事件的概率,設圓C的半徑為r,
試驗發(fā)生包含的事件對應的是扇形AOB,
滿足條件的事件是圓,其面積為⊙C的面積=π•r2,
連接OC,延長交扇形于P.
由于CE=r,∠BOP=$\frac{π}{6}$,OC=2r,OP=3r,
則S扇形AOB=$\frac{π•(3r)^{2}}{6}$=$\frac{3π{r}^{2}}{2}$,
∴⊙C的面積與扇形OAB的面積比是$\frac{2}{3}$.
∴概率P=$\frac{2}{3}$,
故答案為$\frac{2}{3}$.
點評 本題是一個等可能事件的概率,對于這樣的問題,一般要通過把試驗發(fā)生包含的事件同集合結合起來,根據集合對應的圖形做出面積,用面積的比值得到結果.連接圓心和切點是常用的輔助線做法,本題的關鍵是求得扇形半徑與圓半徑之間的關系.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2016 | B. | 2017 | C. | 4032 | D. | 4034 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 若l∥α,l∥β,則α∥β | B. | 若l∥α,l⊥β,則α⊥β | C. | 若l⊥α,α⊥β,則l∥β | D. | 若l∥α,α⊥β,則l⊥β |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,1) | B. | (-1,0) | C. | (1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com