9.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+3y的最大值為( 。
A.2B.3C.11D.18

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值.

解答 解:作出不等式對(duì)應(yīng)的平面區(qū)域(陰影部分),
由z=2x+3y,得y=$-\frac{2}{3}x+\frac{z}{3}$,
平移直線y=$-\frac{2}{3}x+\frac{z}{3}$,由圖象可知當(dāng)直線y=$-\frac{2}{3}x+\frac{z}{3}$經(jīng)過(guò)點(diǎn)C時(shí),直線y=$-\frac{2}{3}x+\frac{z}{3}$的截距最大,此時(shí)z最大.
由$\left\{\begin{array}{l}{x-y+1=0}\\{2x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,
即C(3,4).
此時(shí)z的最大值為z=2×3+3×4=6+12=18,
故選:D.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知數(shù)列{an}是遞增等差數(shù)列,a1=2,其前n項(xiàng)為Sn(n∈N*).且a1,a4,S5+2成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)an及前n項(xiàng)和Sn;
(Ⅱ)若數(shù)列{bn}滿足bn=${2^{\frac{a_n}{2}-1}}$+1,計(jì)算{bn}的前n項(xiàng)和Tn,并用數(shù)學(xué)歸納法證明:當(dāng)n≥5時(shí),n∈N*,Tn>Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過(guò)點(diǎn)(1,$\frac{3}{2}$),且離心率e=$\frac{1}{2}$,過(guò)橢圓右焦點(diǎn)F作互相垂直的兩直線與其右準(zhǔn)線交于點(diǎn)M、N,A為橢圓的左頂點(diǎn),連接AM、AN交橢圓于P,Q兩點(diǎn).
(1)求橢圓C的方程;
(2)求MN的最小值;
(3)問(wèn):直線PQ是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出此定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知實(shí)數(shù)x,y,滿足$\left\{\begin{array}{l}\;\;x+y-1≥0\;\\ x-2y+2≥0\\ \;\;\;y≥mx\;\end{array}$且目標(biāo)函數(shù)z=$\frac{1}{2}$x+y的最大值是2,則實(shí)數(shù)m的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)集合A={4,5,7,9},B={3,4,7,8},則集合A∩B中的元素共有(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=2sin(2x+$\frac{π}{2}$)-sin(2x+π)的最小正周期是π;函數(shù)f(x)的最大值是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.給定雙曲線C:x2-$\frac{2{y}^{2}}{\sqrt{5}+1}$=1,若直線l過(guò)C的中心,且與C交M,N兩點(diǎn),P為曲線C上任意一點(diǎn),若直線PM,PN的斜率均存在且分別記為kPM、kPN,則kPM•kPN=$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知x,y∈(0,1),且x<y,若xy=$\frac{1}{9}$,w=log${\;}_{\frac{1}{3}}$x•logy${\;}_{\frac{1}{3}}$y,則( 。
A.W≤1B.W<1C.W≥1D.W>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在△ABC中,a=$\sqrt{3}$,b=1,∠C=30°,試判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案