精英家教網 > 高中數學 > 題目詳情
4.設集合A={4,5,7,9},B={3,4,7,8},則集合A∩B中的元素共有(  )
A.1個B.2個C.3個D.4個

分析 由A與B,求出兩集合的交集,即可作出判斷.

解答 解:∵A={4,5,7,9},B={3,4,7,8},
∴A∩B={4,7},
則集合A∩B中的元素共有2個,
故選:B.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

14.已知數列{an}的前n項和Sn,數列{bn}為等差數列,b1=1,bn>0(n≥2),b2Sn+an=2且3a2=2a3+a1
(1)求{an}、{bn}的通項公式;
(2)設cn=$\frac{1}{{a}_{n}}$,Tn=$\frac{b_1}{{{c_1}+1}}+\frac{b_2}{{{c_2}+1}}+…+\frac{b_n}{{{c_n}+1}}$,證明:Tn<$\frac{5}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知點P是直線l:y=x+2與橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的一個公共點,F1,F2分別為該橢圓的左右焦點,設|PF1|+|PF2|取得最小值時橢圓為C.
(Ⅰ)求橢圓C的標準方程及離心率;
(Ⅱ)已知A,B為橢圓C上關于y軸對稱的兩點,Q是橢圓C上異于A,B的任意一點,直線QA,QB分別與y軸交于點M(0,m),N(0,n),試判斷mn是否為定值;如果為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

12.若復數z滿足|z+3|=|z-4i|(i為虛數單位),則|z|的最小值為$\frac{7}{10}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.如圖,AB是△ABC外接圓O的直徑,四邊形DCBE為矩形,且DC⊥平面ABC,AB=4,BE=1.
(1)證明:直線BC⊥平面ACD;
(2)當三棱錐E-ABC的體積最大時,求異面直線CO與DE所成角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-y+1≥0}\\{2x-y-2≤0}\end{array}\right.$,則目標函數z=2x+3y的最大值為(  )
A.2B.3C.11D.18

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個頂點作一條漸近線的垂線,垂足為P,記以雙曲線的實軸為長軸且過點P的橢圓的離心率為e1,雙曲線的離心率為e2,則$\frac{1}{{e}_{1}^{2}}$-$\frac{1}{{e}_{2}^{2}}$=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.過△ABC的重心G任作一條直線分別交AB,AC于點D、E,設$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$.
(1)用$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{AG}$;
(2)若$\overrightarrow{AD}$=x$\overrightarrow{AB}$,$\overrightarrow{AE}$=y$\overrightarrow{AC}$,且xy≠0,求$\frac{1}{x}$+$\frac{1}{y}$的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.非空集合A={(x,y)$\left\{\begin{array}{l}{ax-2y+8≥0}\\{x-y-1≤0}\\{2x+ay-2≤0}\end{array}\right.$},當(x,y)∈A時,對任意實數m,目標函數z=x+my的最大值和最小值至少有一個不存在,則實數a的取值范圍是( 。
A.(-∞,2)B.[0,2)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

同步練習冊答案