已知a∈R,集合A={-3,a2,a-1},B={a-3,2a-1,a2+1},如果A∩B={-3},求A∪B.
考點:交集及其運算,并集及其運算
專題:集合
分析:根據(jù)A與B的交集得到元素3屬于A,屬于B,確定出a的值,得到A與B的并集即可.
解答: 解:∵a∈R,集合A={-3,a2,a-1},B={a-3,2a-1,a2+1},且A∩B={-3},
∴-3∈A,-3∈B,即a-3=-3或2a-1=-3或a2+1=-3,
解得:a=0或a=-1,
當a=0時,A={-3,0,-1},B={-3,-1,1},此時A∩B={-3,-1},不合題意,舍去;
當a=-1時,A={-3,1,0},B={-4,-3,2},此時A∩B={-3},符合題意,
則A∪B={-4,-3,0,1,2}.
點評:此題考查了交集及其運算,以及并集及其運算,熟練掌握各自的定義是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

方程x2+2mx+1=0有兩個不相等的負根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)y=2|x+1|-|x-1|
(1)討論y=f(x)的單調(diào)性,作出其圖象;
(2)求f(x)≥2
2
的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題p:“方程
x2
k-3
+
y2
k+3
=1表示雙曲線”(k∈R);命題q:y=log2(kx2+kx+1)定義域為R,若命題p∨q為真命題,p∧q為假命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在△ABC中,sin(A+B)=2sin(A-B).
(1)若B=
π
6
,求A;
(2)若tanA=2,求tanB的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1+2sin(2x-
π
3
).
(1)寫出函數(shù)f(x)的振幅,周期,單調(diào)減區(qū)間;
(2)函數(shù)g(x)=1+2sin(2x)的圖象經(jīng)過怎樣的變換可以得到f(x)的圖象?
(3)若不等式f(x)-m<2在x∈[
π
4
π
2
]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg[a2x+2(ab)x-b2x+1](a>0,b>0),求使f(x)>0成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個頂點為A(0,-1),焦點在x軸上,若右焦點到直線x-y+2
2
=0的距離為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在斜率為k(k≠0),且過定點Q(0,2)的直線l,使l與橢圓交于兩個不同的點M,N,且|AM|=|AN|?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的不等式.
(1)92x-13
3
2
;            
(2)logx
4
5
<1,(x>0且x≠1).

查看答案和解析>>

同步練習冊答案