【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時(shí),多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3,14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,則輸出的n值為( ) 參考數(shù)據(jù): ,sin15°≈0.2588,sin7.5°≈0.1305.

A.12
B.24
C.48
D.96

【答案】B
【解析】解:模擬執(zhí)行程序,可得: n=6,S=3sin60°= ,
不滿足條件S≥3.10,n=12,S=6×sin30°=3,
不滿足條件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,
滿足條件S≥3.10,退出循環(huán),輸出n的值為24.
故選:B.
列出循環(huán)過程中S與n的數(shù)值,滿足判斷框的條件即可結(jié)束循環(huán).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|< )的部分圖象如圖所示,將函數(shù)f(x)的圖象向左平移m(m>0)個(gè)單位后,得到的圖象關(guān)于點(diǎn)( ,﹣1)對(duì)稱,則m的最小值是(
A.
B.
C. π
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)市場(chǎng)對(duì)某種商品的周銷售量(單位:噸)進(jìn)行統(tǒng)計(jì),最近100周的統(tǒng)計(jì)結(jié)果如下表所示:

周銷售量

2

3

4

頻數(shù)

20

50

30


(1)根據(jù)上面統(tǒng)計(jì)結(jié)果,求周銷售量分別為2噸,3噸和4噸的頻率;
(2)已知每噸該商品的銷售利潤(rùn)為2千元,ξ表示該種商品兩周銷售利潤(rùn)的和(單位:千元),若以上述頻率作為概率,且各周的銷售量相互獨(dú)立,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P是橢圓C上任一點(diǎn),點(diǎn)P到直線l1:x=﹣2的距離為d1 , 到點(diǎn)F(﹣1,0)的距離為d2 , 且 = .直線l與橢圓C交于不同兩點(diǎn)A、B(A,B都在x軸上方),且∠OFA+∠OFB=180°.
(1)求橢圓C的方程;
(2)當(dāng)A為橢圓與y軸正半軸的交點(diǎn)時(shí),求直線l方程;
(3)對(duì)于動(dòng)直線l,是否存在一個(gè)定點(diǎn),無論∠OFA如何變化,直線l總經(jīng)過此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是圓O的直徑,點(diǎn)B在圓O上,∠BAC=30°,BM⊥AC交AC于點(diǎn)M,EA⊥平面ABC,F(xiàn)C∥EA,AC=4,EA=3,F(xiàn)C=1.
(Ⅰ)證明:EM⊥BF;
(Ⅱ)求平面BEF與平面ABC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究小組在電腦上進(jìn)行人工降雨模擬試驗(yàn),準(zhǔn)備用A、B、C三種人工降雨方式分別對(duì)甲、乙、丙三地實(shí)施人工降雨,其試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)如表

方式

實(shí)施地點(diǎn)

大雨

中雨

小雨

模擬實(shí)驗(yàn)總次數(shù)

A

4次

6次

2次

12次

B

3次

6次

3次

12次

C

2次

2次

8次

12次

假定對(duì)甲、乙、丙三地實(shí)施的人工降雨彼此互不影響,請(qǐng)你根據(jù)人工降雨模擬試驗(yàn)的統(tǒng)計(jì)數(shù)據(jù)
(I)求甲、乙、丙三地都恰為中雨的概率;
(Ⅱ)考慮到旱情和水土流失,如果甲地恰需中雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),丙地只能是小雨或中雨即達(dá)到理想狀態(tài),記“甲、乙、丙三地中達(dá)到理想狀態(tài)的個(gè)數(shù)”為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)平放的各棱長(zhǎng)均為 4 的三棱錐內(nèi)有一個(gè)小球,現(xiàn)從該三棱錐頂端向錐內(nèi)注水,小球慢慢上。(dāng)注入的水的體積是該三棱錐體積的 時(shí),小球恰與該三棱錐各側(cè)面及水面相切(小球完全浮在水面上方),則小球的表面積等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線E:x2=4y的焦點(diǎn)F是橢圓 (a>b>0)的一個(gè)頂點(diǎn).過點(diǎn)F且斜率為k(k≠0)的直線l交橢圓C于另一點(diǎn)D,交拋物線E于A、B兩點(diǎn),線段DF的中點(diǎn)為M,直線OM交橢圓C于P、Q兩點(diǎn),記直線OM的斜率為k',滿足
(1)求橢圓C的方程;
(2)記△PDF的面積為S1 , △QAB的面積為S2 , 設(shè) ,求實(shí)數(shù)λ的最大值及取得最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的短軸長(zhǎng)為2 ,離心率為 ,點(diǎn)F為其在y軸正半軸上的焦點(diǎn). (Ⅰ)求橢圓C的方程;
(Ⅱ)若一動(dòng)圓過點(diǎn)F,且與直線y=﹣1相切,求動(dòng)圓圓心軌跡C1的方程;
(Ⅲ)過F作互相垂直的兩條直線l1 , l2 , 其中l(wèi)1交曲線C1于M、N兩點(diǎn),l2交橢圓C于P、Q兩點(diǎn),求四邊形PMQN面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案