已知三棱錐P-ABC的四個(gè)頂點(diǎn)均在半徑為R的球面上,且滿足:
PA
PB
=0,
PB
PC
=0,
PC
PA
=0
,則三棱錐P-ABC的側(cè)面積的最大值為( 。
A.2R2B.3R2C.4R2D.R2
PA
PB
=0,
PB
PC
=0,
PC
PA
=0
,
∴PA,PB,PC兩兩垂直,
又∵三棱錐P-ABC的四個(gè)頂點(diǎn)均在半徑為R的球面上
∴(2R)2=PA2+PB2+PC2
則由基本不等式可得PA2+PB2≥2PA•PB,PA2+PC2≥2PA•PC,PB2+PC2≥2PB•PC,
即4R2=PA2+PB2+PC2≥PA•PB+PB•PC+PA•PC
則三棱錐P-ABC的側(cè)面積S=
1
2
(PA•PB+PB•PC+PA•PC)≤2R2,
則三棱錐P-ABC的側(cè)面積的最大值為2R2,
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC的三條側(cè)棱PA,PB,PC兩兩相互垂直,且PA=2
3
,PB=3,PC=2外接球的直徑等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC中,PC⊥底面ABC,AB=BC,D、F分別為AC、PC的中點(diǎn),DE⊥AP于E.
(Ⅰ)求證:AP⊥平面BDE;
(Ⅱ)若AE:EP=1:2,求截面BEF分三棱錐P-ABC所成上、下兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知三棱錐P-ABC,∠ACB=90°,CB=4,AB=20,D為AB中點(diǎn),M為PB的中點(diǎn),且△PDB是正三角形,PA⊥PC.
(I)求證:DM∥平面PAC;
(II)求證:平面PAC⊥平面ABC;
(Ⅲ)求三棱錐M-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•河西區(qū)二模)如圖,已知三棱錐P-ABC中,PA⊥面ABC,其中正視圖為Rt△PAC,AC=2
6
,PA=4,俯視圖也為直角三角形,另一直角邊長(zhǎng)為2
2

(Ⅰ)畫(huà)出側(cè)視圖并求側(cè)視圖的面積;
(Ⅱ)證明面PAC⊥面PAB;
(Ⅲ)求直線PC與底面ABC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•黃浦區(qū)二模)已知三棱錐P-ABC的棱長(zhǎng)都是2,點(diǎn)D是棱AP上不同于P的點(diǎn).
(1)試用反證法證明直線BD與直線CP是異面直線.
(2)求三棱錐P-ABC的體積VP-ABC

查看答案和解析>>

同步練習(xí)冊(cè)答案