5.已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且$\sqrt{3}bcosC=csinB$;
(1)求角C;
(2)若$c=\sqrt{3}$,求△ABC周長的取值范圍.

分析 (1)利用正弦定理化簡已知等式可得:$\sqrt{3}$sinBcosC=sinCsinB,結(jié)合sinB≠0,可得:tanC=$\sqrt{3}$,結(jié)合范圍C∈(0,π),即可得解C的值.
(2)利用正弦定理可得:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2$,利用三角函數(shù)恒等變換的應(yīng)用化簡可得:三角形的周長l=2$\sqrt{3}$sin(A+$\frac{π}{6}$)+$\sqrt{3}$,根據(jù)A的范圍,和正弦函數(shù)的圖象和性質(zhì)即可解得△ABC周長的取值范圍.

解答 解:(1)∵$\sqrt{3}bcosC=csinB$,
∴利用正弦定理可得:$\sqrt{3}$sinBcosC=sinCsinB,
∵B為三角形內(nèi)角,sinB≠0,
∴可得:tanC=$\sqrt{3}$,
∵C∈(0,π),
∴C=$\frac{π}{3}$.
(2)∵由(1)及題意可得:$\frac{a}{sinA}=\frac{sinB}=\frac{c}{sinC}=2$,
∴三角形的周長l=a+b+c=2sinA+2sinB+$\sqrt{3}$=2sinA+2sin($\frac{2π}{3}$-A)+$\sqrt{3}$=2$\sqrt{3}$sin(A+$\frac{π}{6}$)+$\sqrt{3}$,
∵A∈(0,$\frac{2π}{3}$),A+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),
∴sin(A+$\frac{π}{6}$)∈($\frac{1}{2}$,1],l=2$\sqrt{3}$sin(A+$\frac{π}{6}$)+$\sqrt{3}$∈(2$\sqrt{3}$,3$\sqrt{3}$].
故△ABC周長的取值范圍為(2$\sqrt{3}$,3$\sqrt{3}$].

點(diǎn)評(píng) 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在一個(gè)排列中,如果一對(duì)數(shù)的前后位置與大小順序相反,即前面的數(shù)大于后面的數(shù),那么就稱它們?yōu)橐粋(gè)逆序.一個(gè)排列中逆序的總數(shù)就稱作這個(gè)排列的逆序數(shù).如排列1,3,5,4,2中,3,2;5,4;5,2;4,2為逆序,逆序數(shù)是4.現(xiàn)有1~101這101個(gè)自然數(shù)的排列:1,3,5,7,…,99,101,100,98,…,6,4,2,則此排列的逆序數(shù)是( 。
A.2 500B.2 600C.2 700D.2 80

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知三棱柱ABC-A1B1C1的底面為等腰三角形,且平面B1BCC1⊥平面ABC,C1B⊥BC,M是線段AB上的點(diǎn),且∠ACM=∠BCM=60°,CA=CB=$\frac{{\sqrt{3}}}{3}$C1B.
(Ⅰ)求證:CM⊥AC1
(Ⅱ)求直線CC1與平面B1CM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知復(fù)數(shù)z=$\frac{1+2i}{{i}^{3}}$,則它的共軛復(fù)數(shù)$\overline{z}$=-2-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四邊形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=4,在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD.
(1)求證:面FEB⊥面CEB;
(2)若二面角D-AF-C的大小為$\frac{π}{4}$,求幾何體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)點(diǎn)P為函數(shù)f(x)=x3-$\frac{1}{4x}$圖象上任一點(diǎn),則f(x)在點(diǎn)P處的切線的傾斜角α的取值范圍為( 。
A.[$\frac{π}{3}$,π)B.($\frac{π}{6}$,$\frac{π}{3}$)C.($\frac{π}{6}$,$\frac{π}{2}$)D.[$\frac{π}{3}$,$\frac{π}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)計(jì)一個(gè)計(jì)算1×3×5×7×…×199的算法,并寫出程序,畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.歐拉公式eθi=cosθ+isinθ(e為自然對(duì)數(shù)的底數(shù),i為虛數(shù)單位)是瑞士著名數(shù)學(xué)家歐拉發(fā)明的,根據(jù)歐拉公式可知,復(fù)數(shù)${e^{\frac{π}{6}i}}$的虛部為(  )
A.$-\frac{1}{2}i$B.$\frac{1}{2}i$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.一切奇數(shù)都不能被2整除,2100+1是奇數(shù),所以2100+1不能被2整除,其演繹推理的“三段論”的形式為一切奇數(shù)都不能被2整除,大前提,2100+1是奇數(shù),小前提,所以2100+1不能被2整除.結(jié)論,.

查看答案和解析>>

同步練習(xí)冊(cè)答案