(本小題滿分15分)已知函數(shù) .
(Ⅰ)試用含式子表示;(Ⅱ)求的單調(diào)區(qū)間;(Ⅲ)若,試求在區(qū)間上的最大值.
(Ⅰ)   (Ⅱ)  上單調(diào)遞增,在上單調(diào)遞減(Ⅲ)
:(Ⅰ)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823131307813410.gif" style="vertical-align:middle;" />…2分
, 得:
……4分
(Ⅱ)將代入: 
……6分
當(dāng)時(shí), 由 ,得
  即 上單調(diào)遞增
當(dāng)時(shí), 由 ,得
  即 上單調(diào)遞減
 上單調(diào)遞增,在上單調(diào)遞減…………9分
(Ⅲ)當(dāng),即時(shí),上單調(diào)遞增
所以…11分
當(dāng),即時(shí),上單調(diào)遞增,在上單調(diào)遞減    
所以 ………13分
當(dāng)時(shí),上單調(diào)遞減
所以 ……15分
綜上:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=-x2+8x,g(x)6lnxm.(Ⅰ)求f(x)在區(qū)間[t,t+1]上的最大值h(t);(Ⅱ)是否存在實(shí)數(shù)m,使得yf(x)的圖象與yg(x)的圖象有且只有三個(gè)不同的交點(diǎn)?若存在,求出m的取值范圍;,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分16分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求證:函數(shù)上單調(diào)遞增;(Ⅱ)若函數(shù)有三個(gè)零點(diǎn),求的值;
(Ⅲ)若存在,使得,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)為奇函數(shù),其圖象在點(diǎn)處的切線與直線垂直,且在x=-1處取得極值.
(Ⅰ)求a,的值;
(Ⅱ)求函數(shù)上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在函數(shù)的圖象上,以為切點(diǎn)的切線的傾斜角為
(I)求的值;
(II)是否存在最小的正整數(shù),使得不等式恒成立?如果存在,請(qǐng)求出最小的正整數(shù),如果不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2)當(dāng)時(shí),若對(duì)任意,均有,求實(shí)數(shù)的取值范圍;
(3)若,對(duì)任意、,且,試比較 的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn),且滿足,設(shè)函數(shù),其中為非零常數(shù)
(I)求函數(shù)的解析式;
(II)當(dāng) 時(shí),判斷函數(shù)的單調(diào)性并且說(shuō)明理由;
(III)證明:對(duì)任意的正整數(shù),不等式恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù),,設(shè)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若以函數(shù)圖像上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值;

查看答案和解析>>

同步練習(xí)冊(cè)答案