設(shè)橢圓的右焦點(diǎn)為,直線軸交于點(diǎn),若(其中為坐標(biāo)原點(diǎn)).
(I)求橢圓的方程;
(II)設(shè)是橢圓上的任意一點(diǎn),為圓的任意一條直徑(為直徑的兩個(gè)端點(diǎn)),求的最大值.
(I)橢圓的方程為
(II)當(dāng)時(shí),,故

試題分析:(I)由題設(shè)知,,, 由,
.解得.所以橢圓的方程為
(II)方法1:設(shè)點(diǎn),因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824013506531426.png" style="vertical-align:middle;" />的中點(diǎn)坐標(biāo)為
所以所以


因?yàn)辄c(diǎn)在圓上,所以,即
因?yàn)辄c(diǎn)在橢圓上,所以,即

因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824013506937673.png" style="vertical-align:middle;" />,所以當(dāng)時(shí),
法2:由題知圓N: 的圓心為N;則

從而求的最大值轉(zhuǎn)化為求的最大值;
因?yàn)辄c(diǎn)在橢圓上,設(shè)點(diǎn)所以,即
又因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824013507187514.png" style="vertical-align:middle;" />,所以;
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824013506937673.png" style="vertical-align:middle;" />,所以當(dāng)時(shí),,故
方法3:①若直線的斜率存在,設(shè)的方程為
,解得.因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824013506063289.png" style="vertical-align:middle;" />是橢圓上的任一點(diǎn),設(shè)點(diǎn),
所以,即.所以

因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824013506937673.png" style="vertical-align:middle;" />,所以當(dāng)時(shí),,故
②若直線EF的斜率不存在,此時(shí)EF的方程為; 由,解得
不妨設(shè)E(0,3),F(0,1); 因?yàn)辄c(diǎn)在橢圓上,設(shè)點(diǎn)所以,即
所以,故
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824013506937673.png" style="vertical-align:middle;" />,所以當(dāng)時(shí),,故
點(diǎn)評(píng):難題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(2)注意討論直線的斜率存在、不存在兩種情況,易于忽視。熟練進(jìn)行平面向量的坐標(biāo)運(yùn)算,是正確解題的關(guān)鍵。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),其長(zhǎng)軸、焦距和短軸的長(zhǎng)的平方依次成等差數(shù)列.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線與軸正半軸、軸分別交于點(diǎn),與橢圓分別交于點(diǎn),各點(diǎn)均不重合,且滿足,. 當(dāng)時(shí),試證明直線過定點(diǎn).過定點(diǎn)(1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過直線y=﹣1上的動(dòng)點(diǎn)A(a,﹣1)作拋物線y=x2的兩切線AP,AQ,P,Q為切點(diǎn).
(1)若切線AP,AQ的斜率分別為k1,k2,求證:k1•k2為定值.
(2)求證:直線PQ過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線C:,(為參數(shù))的普通方程為               (     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知F1、F2分別為橢圓C1的上、下焦點(diǎn),其中F1也是拋物線C2的焦點(diǎn),點(diǎn)A是曲線C1,C2在第二象限的交點(diǎn),且

(Ⅰ)求橢圓1的方程;
(Ⅱ)已知P是橢圓C1上的動(dòng)點(diǎn),MN是圓C:的直徑,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請(qǐng)問是否存在直線 ,∥l且與曲線C的交點(diǎn)A、B滿足;
若存在請(qǐng)求出滿足題意的所有直線方程,若不存在請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在坐標(biāo)原點(diǎn)焦點(diǎn)在軸上的橢圓C,其長(zhǎng)軸長(zhǎng)等于4,離心率為
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)(0,1), 問是否存在直線與橢圓交于兩點(diǎn),且?若存在,求出的取值范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,兩種坐標(biāo)系中的長(zhǎng)度單位相同,已知曲線的極坐標(biāo)方程為
(1)求的直角坐標(biāo)方程;
(2)直線為參數(shù))與曲線C交于,兩點(diǎn),與軸交于,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是過拋物線焦點(diǎn)的弦,,則中點(diǎn)的橫坐標(biāo)是        

查看答案和解析>>

同步練習(xí)冊(cè)答案