【題目】某商場經(jīng)營一批進(jìn)價為/臺的小商品,經(jīng)調(diào)查得知如下數(shù)據(jù).若銷售價上下調(diào)整,銷售量和利潤大體如下:

銷售價(/臺)

日銷售量(

日銷售額

日銷售利潤(

1)在下面給出的直角坐標(biāo)系中,根據(jù)表中的數(shù)據(jù)描出實數(shù)對的對應(yīng)點,并寫出的一個函數(shù)關(guān)系式;

2)請把表中的空格里的數(shù)據(jù)填上;

3)根據(jù)表中的數(shù)據(jù)求的函數(shù)關(guān)系式,并指出當(dāng)銷售單價為多少元時,才能獲得最大日銷售利潤?

【答案】1;(2)見解析;(3)銷售單價為元時,可獲得最大日銷售利潤.

【解析】試題分析:(1)找到對應(yīng)的4個點,即,設(shè)的一次函數(shù)解析式為: ,由圖表數(shù)據(jù)可得出;(2)根據(jù)表格先計算出進(jìn)價,再根據(jù)(日銷售額=銷售價×日銷售量,日銷售利潤=(銷售價-進(jìn)價)×日銷售量)得表格中的數(shù)據(jù);(3)由(1)知銷售單價為元時,日銷售量,日銷售利潤, ,根據(jù)二次函數(shù)的性質(zhì)得結(jié)果.

試題解析:(1)如下圖.

設(shè)的一次函數(shù)解析式為: ,依據(jù)數(shù)據(jù)可得: 解之得: , ,∴一次函數(shù)解析式為: .

2由表可得解得,故可得下表:

日銷售額(元)

日銷售利潤(元)

3)由(1)知銷售單價為元時,日銷售量(臺),由表格知進(jìn)價為元,則日銷售利潤故當(dāng)時, 取最大值,即銷售單價為元時,可獲得最大日銷售利潤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017屆湖北省荊、荊、襄、宜四地七校考試聯(lián)盟高三2月聯(lián)考數(shù)學(xué)(文)】已知函數(shù)

(Ⅰ)討論函數(shù)的極值點的個數(shù);

(Ⅱ)若有兩個極值點,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

1)判斷函數(shù)的奇偶性,并說明理由;

2)證明:當(dāng)時,函數(shù)上為減函數(shù);

3)求函數(shù)的值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國式過馬路”是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,及“湊夠一撮人就可以走了,和紅綠燈無關(guān)”,某校研究性學(xué)習(xí)小組對全校學(xué)生按“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”等三種形式進(jìn)行調(diào)查獲得下表數(shù)據(jù):

跟從別人闖紅燈

從不闖紅燈

帶頭闖紅燈

男生

980

410

60

女生

340

150

60

用分層抽樣的方法,從所有被調(diào)查的人中抽取一個容量為的樣本,其中在“跟從別人闖紅燈”的人中抽取了66人,

(Ⅰ) 求的值;

(Ⅱ)在所抽取的“帶頭闖紅燈”的人中,任選取2人參加星期天社區(qū)組織的“文明交通”宣傳活動,求這2人中至少有1人是女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)市政府“綠色出行”的號召,王老師每個工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費用是3元,騎共享單車單程所需的費用是1元.記王老師在一個工作日內(nèi)上下班所花費的總交通費用為X元,假設(shè)王老師上下班選擇出行方式是相互獨立的.

(I)求X的分布列和數(shù)學(xué)期望;

(II)已知王老師在2017年6月的所有工作日(按22個工作日計)中共花費交通費用110元,請判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說明理由.

原則:設(shè)表示王老師某月每個工作日出行的平均費用,若,則有95%的把握認(rèn)為王老師該月的出行規(guī)律與前幾個月的出行規(guī)律相比有明顯變化.(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若上為增函數(shù),求實數(shù)的取值范圍;

(2)當(dāng)時,函數(shù)有零點,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應(yīng)數(shù)據(jù)

x

2

4

5

6

8

y

30

40

60

50

70

1)畫出散點圖,并判斷廣告費與銷售額是否具有相關(guān)關(guān)系;

2)根據(jù)表中提供的數(shù)據(jù),用最小二乘法求出yx的回歸方程

3)預(yù)測銷售額為115萬元時,大約需要多少萬元廣告費。

參考公式:回歸方程為其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某單位用2160萬元購得一塊空地,計劃在該空地上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為xx≥10)層,則每平方米的平均建筑費用為56048x(單位:元).

1)寫出樓房平均綜合費用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;

2)該樓房應(yīng)建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

(注:平均綜合費用=平均建筑費用+平均購地費用,平均購地費用=購地總費用/建筑總面積)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某林區(qū)的森林蓄積量每年比上一年平均增長9.5%,要增長到原來的x,需經(jīng)過y,則函數(shù)yf(x)的圖像大致為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案