設(shè)
,
是兩條不同的直線,
是一個平面,則下列命題正確的是( )
解:A,根據(jù)線面垂直的判定定理,要垂直平面內(nèi)兩條相交直線才行,不正確;
C:l∥α,m?α,則l∥m或兩線異面,故不正確.
D:平行于同一平面的兩直線可能平行,異面,相交,不正確.
B:由線面垂直的性質(zhì)可知:平行線中的一條垂直于這個平面則另一條也垂直這個平面.故正確.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
敘述并證明兩個平面垂直的判定定理。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱錐S-ABC中,∠SAB=∠SAC=∠ABC=90°,SA=AB,SB=BC.
(Ⅰ)證明:平面SBC⊥平面SAB;
(Ⅱ)求二面角A-SC-B的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在四棱錐
中,
平面
,底面
為矩形,
.
(Ⅰ)當(dāng)
時,求證:
;
(Ⅱ)若
邊上有且只有一個點
,使得
,求此時二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖5(1)中矩形
中,已知
,
,
分別為
和
的中點,對角線
與
交于
點,沿
把矩形
折起,使平面
與平面
所成角為
,如圖5(2).
(1) 求證:
;
(2) 求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知梯形ABCD,
,E為AB的中點,將
沿
折起,使點A移至點P,若平面
平面
,則D點到平面
的距離是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知菱形ABCD中,AB=4,
(如圖1所示),將菱形ABCD沿對角線
翻折,使點
翻折到點
的位置(如圖2所示),點E,F(xiàn),M分別是AB,DC
1,BC
1的中點.
(Ⅰ)證明:BD //平面
;
(Ⅱ)證明:
;
(Ⅲ)當(dāng)
時,求線段AC
1的長.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
為三條不同的直線,
為兩個不同的平面,下列命題中正確的是( )
查看答案和解析>>