若z=a2+a-2+(a2-a+2)i為純虛數(shù),那么實(shí)數(shù)a的值是
 
考點(diǎn):復(fù)數(shù)的基本概念
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接由給出的復(fù)數(shù)的實(shí)部等于0且虛部不等于0求解a的值.
解答: 解:∵z=a2+a-2+(a2-a+2)i為純虛數(shù),
a2+a-2=0①
a2-a+2≠0②
,
解①得,a=1或a=-2;
解②得,a≠-1且a≠2.
故答案為:1或-2.
點(diǎn)評(píng):本題考查了復(fù)數(shù)的基本概念,考查了復(fù)數(shù)是純虛數(shù)的條件,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2sin(-3x+
π
6
)
的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3個(gè)不同的元素,并且該直線的傾斜角為銳角,求符合這些條件的直線的條數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用函數(shù)的圖象討論函數(shù)y=|x|的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若三條直線l1:x-y=0;l2:x+y-2=0;l3:5x-ky-15=0圍成一個(gè)三角形,則k的取值范圍是( 。
A、k∈R且k≠±5且k≠1
B、k∈R且k≠±5且k≠-10
C、k∈R且k≠±1且k≠0
D、k∈R且k≠±5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知不等式x2+bx+c>0的解集是{x|x<2或x>3},求b、c的值;
(2)已知二次不等式ax2+bx+c<0的解集為{x|x<
1
3
或x>
1
2
},求關(guān)于x的不等式cx2-bx+a>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2x與y=-
4
2x
關(guān)于直線
 
對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=x2-(m+2)x+m,m∈R.
(1)若tanA、tanB是方程g(x)+3=0的兩個(gè)實(shí)根,且A、B為銳角△ABC的兩個(gè)內(nèi)角,求m的取值范圍.
(2)對(duì)任意實(shí)數(shù)a,恒有g(shù)(-1+cosa)≥0,求m的取值范圍;
(3)在(2)的條件下,若函數(shù)g(sina)的最大值為8.求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)2
1-sin80°
-
2+2cos80°
=( 。
A、-2sin40°
B、2cos40°
C、cos40°-sin40°
D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案