A. | (3,0) | B. | (3,3) | C. | (4,3) | D. | (6,3) |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:由z=y-2x,得y=2x+z,
作出不等式對應(yīng)的可行域,
平移直線y=2x+z,
由平移可知當(dāng)直線y=2x+z經(jīng)過點(diǎn)A時(shí),
直線y=2x+z的截距最小,此時(shí)z取得最值,
由$\left\{\begin{array}{l}{y=3}\\{3x-y-9=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=3}\end{array}\right.$,
即A(4,3),
即z=y-2x取得最大值的最優(yōu)解為(4,3).
故選:C
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=$\frac{2}{x}$ | B. | y=2x | C. | y=2x | D. | y=x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 56 | C. | 256 | D. | 306 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
氣溫(°C) | 20 | 16 | 12 | 4 |
用電量(度) | 14 | 28 | 44 | 62 |
A. | 70 | B. | 68 | C. | 64 | D. | 62 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,4} | B. | {0,3,4} | C. | {0,2,3,4} | D. | {2} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com