6.任取x,y∈[0,1],則點(diǎn)(x,y)落在拋物線y2=x和x2=y圍成的封閉區(qū)域內(nèi)的概率為$\frac{1}{3}$.

分析 根據(jù)幾何概型的概率公式結(jié)合積分的應(yīng)用求出對應(yīng)區(qū)域的面積,進(jìn)行求解即可得到結(jié)論.

解答 解:由y2=x得y=$\sqrt{x}$,(y≥0).
由y2=x和x2=y得交點(diǎn)B(1,1),
則陰影部分的面積S=∫${\;}_{0}^{1}$($\sqrt{x}$-x2)dx=($\frac{2}{3}$x${\;}^{\frac{3}{2}}$-$\frac{1}{3}$x3)|${\;}_{0}^{1}$=$\frac{2}{3}$-$\frac{1}{3}$=$\frac{1}{3}$,
故答案為$\frac{1}{3}$,

點(diǎn)評 本題主要考查幾何概型的概率的計算,根據(jù)積分的應(yīng)用求出對應(yīng)區(qū)域的面積是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,已知三棱錐P-ABC的底面是等腰直角三角形,且∠ACB=90°,側(cè)面PAB⊥底面ABC,AB=PA=PB=4.則這個三棱錐的三視圖中標(biāo)注的尺寸x,y,z分別是( 。
A.$2\sqrt{3}$,$2\sqrt{2}$,2B.4,2,$2\sqrt{2}$C.$2\sqrt{3}$,2,2D.$2\sqrt{3}$,2,$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an},如果數(shù)列{bn}滿足b1=a1,bn=an+an-1(n≥2,n∈N*).則稱數(shù)列{bn}是數(shù)列{an}的“生成數(shù)列”.
(1)若數(shù)列{an}的通項為數(shù)列an=n,寫出數(shù)列{an}的“生成數(shù)列”{bn}的通項公式.
(2)若數(shù)列{cn}的通項為數(shù)列cn=An+B,(A,B是常數(shù)),試問數(shù)列{cn}的“生成數(shù)列”{ln}是否是等差數(shù)列,請說明理由.
(3)若數(shù)列{dn}的通項公式為dn=2n+n,設(shè)數(shù)列{dn}的“生成數(shù)列”{pn}的前n項和為Tn,問是否存在自然數(shù)m滿足(Tn-2014)(Tn-6260)≤0,若存在,請求出m的值,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^3}\\ sinx\end{array}\right.$$\begin{array}{l}x≥0\\ x<0\end{array}$,則$f[f(-\frac{3π}{2})]$=(  )
A.-sin1B.sin1C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x≥1}\\{x-2y≤0}\\{y-2≤0}\end{array}}\right.$,則z=x+2y-3的最大值為( 。
A.8B.5C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.復(fù)數(shù)$\frac{1}{{i}^{5}}$的虛部為( 。
A.1B.-1C.0D.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等比數(shù)列{an}中,a2=1,公比q≠±1.若a1,4a3,7a5成等差數(shù)列,則a6的值是$\frac{1}{49}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,且過點(diǎn)$A(1,\frac{{\sqrt{3}}}{2})$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l:y=kx+m(k>0,m>0)與橢圓C相交于M、N兩點(diǎn),
(ⅰ)若$k=\frac{1}{2}$,m∈(-1,1),Q(-2m,0),證明:|QM|2+|QN|2為定值;
(ⅱ)若以線段MN為直徑的圓經(jīng)過點(diǎn)O,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.不等式(x2+1)(-2x2-x+1)≤0的解集是(-∞,-1]∪[$\frac{1}{2}$,+∞).

查看答案和解析>>

同步練習(xí)冊答案