分析 (Ⅰ)當(dāng)a=0時(shí),若g(x)≤|x-2|+b對(duì)任意x∈(0,+∞)恒成立,-b≤|x-1|+|x-2|,求出右邊的最小值,即可求實(shí)數(shù)b的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),g(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減,即可求g(x)的最大值.
解答 解:(Ⅰ)當(dāng)a=0時(shí),g(x)=-|x-1|,∴-|x-1|≤|x-2|+b,
∴-b≤|x-1|+|x-2|,
∵|x-1|+|x-2|≥|x-1+2-x|=1,∴-b≤1,∴b≥-1…(5分)
(Ⅱ)當(dāng)a=1時(shí),$g(x)=\left\{\begin{array}{l}2x-1,0<x<1\\ \frac{1}{x}-x+1,x≥1\end{array}\right.$…(6分)
可知g(x)在(0,1)上單調(diào)遞增,在(1,+∞)單調(diào)遞減 …(8分)
∴g(x)max=g(1)=1.…(10分)
點(diǎn)評(píng) 本題考查絕對(duì)值不等式,考查函數(shù)的最值,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12π | B. | $\frac{7π}{3}$ | C. | 6π | D. | $\frac{16π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 15 | B. | 27 | C. | 30 | D. | 40 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com