12.函數(shù)$y=2cos({2x+\frac{π}{6}})({x∈[{0\;,\;\;\frac{π}{2}}]})$的值域是[-2,$\sqrt{3}$].

分析 由x的取值范圍和余弦函數(shù)的值域,即可求出函數(shù)y的值域.

解答 解:函數(shù)$y=2cos({2x+\frac{π}{6}})({x∈[{0\;,\;\;\frac{π}{2}}]})$,
∴2x∈[0,π],
∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴cos(2x+$\frac{π}{6}$)∈[-1,$\frac{\sqrt{3}}{2}$],
∴函數(shù)y=2cos(2x+$\frac{π}{6}$)在x∈[0,$\frac{π}{2}$]上的值域是[-2,$\sqrt{3}$].
故答案為:[-2,$\sqrt{3}$].

點評 本題考查了余弦函數(shù)的值域應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖所示,在三棱柱BCD-B1C1D1中,E、F分別是B1C1和C1D1的中點.求證:四邊形EFDB是梯形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=eax+λlnx,其中a<0,e是自然對數(shù)的底數(shù)
(Ⅰ)若f(x)是(0,+∞)上的單調(diào)函數(shù),求λ的取值范圍;
(Ⅱ)若0<λ<$\frac{1}{e}$,證明:函數(shù)f(x)有兩個極值點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知p:方程x2+2mx+(m+2)=0有兩個不等的正根;q:方程$\frac{x^2}{m+3}-\frac{y^2}{2m-1}=1$表示焦點在y軸上的雙曲線.
(1)若q為真命題,求實數(shù)m的取值范圍;
(2)若“p或q”為真,“p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=|cosx|的最小正周期為( 。
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點M是橢圓$\frac{x^2}{4}+{y^2}=1$上一點,F(xiàn)1,F(xiàn)2是橢圓的焦點,且滿足$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=0,則△MF1F2的面積為(  )
A.1B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知向量$\overrightarrow a=(\;t,\;1)$和$\overrightarrow b=(-2,\;t+2)$,若$\overrightarrow a⊥\overrightarrow b$,則$|\overrightarrow a+\overrightarrow b|$=( 。
A.64B.8C.5D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一球內(nèi)切于底面半徑為$\sqrt{3}$,高為3的圓錐,則內(nèi)切球半徑是1;內(nèi)切球與該圓錐的體積之比為$\frac{4}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.復(fù)數(shù)$\frac{{i({-6+i})}}{{|{3-4i}|}}$的實部與虛部之差為( 。
A.-1B.1C.$-\frac{7}{5}$D.$\frac{7}{5}$

查看答案和解析>>

同步練習(xí)冊答案