科目:高中數學 來源: 題型:
80π | 3 |
查看答案和解析>>
科目:高中數學 來源:2014屆湖南省四校高三上學期第三次聯考理科數學試卷(解析版) 題型:解答題
某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為千元,設該容器的建造費用為千元.
(Ⅰ)寫出關于的函數表達式,并求該函數的定義域;
(Ⅱ)求該容器的建造費用最小時的.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年新課標高三上學期單元測試數學 題型:解答題
(12分)某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為.設該容器的建造費用為千元.
(Ⅰ)寫出關于的函數表達式,并求該函數的定義域;
(Ⅱ)求該容器的建造費用最小時的.
查看答案和解析>>
科目:高中數學 來源:2011年高考試題數學文(山東卷)解析版 題型:解答題
某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為千元.設該容器的建造費用為千元.
(Ⅰ)寫出關于的函數表達式,并求該函數的定義域;
(Ⅱ)求該容器的建造費用最小時的.
查看答案和解析>>
科目:高中數學 來源:2011年高考試題數學文2(山東卷)解析版 題型:解答題
某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為.設該容器的建造費用為千元.
(Ⅰ)寫出關于的函數表達式,并求該函數的定義域;
(Ⅱ)求該容器的建造費用最小時的.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com