【題目】執(zhí)行所示的程序框圖,如果輸入a=3,那么輸出的n的值為(
A.2
B.3
C.4
D.5

【答案】C
【解析】解:由程序框圖得:程序第一次運(yùn)行P=0+30=1,Q=2×1+1=3,n=1;

第二次運(yùn)行P=1+31=4,Q=2×3+1=7.n=2;

第三次運(yùn)行P=4+32=13,Q=2×7+1=15,n=3;

第四次運(yùn)行P=13+33=40,Q=2×15+1=31,n=4,

不滿足P≤Q,程序運(yùn)行終止,輸出n=4.

故選:C.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解程序框圖(程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F(xiàn)分別為BC,CD的中點(diǎn),以A為圓心,AD為半徑的半圓分別交BA及其延長線于點(diǎn)M,N,點(diǎn)P在 上運(yùn)動(dòng)(如圖).若 ,其中λ,μ∈R,則2λ﹣5μ的取值范圍是(
A.[﹣2,2]
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秦九韶是我國南宋時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例,若輸入x的值為2,則輸出的v值為(
A.9×210﹣2
B.9×210+2
C.9×211+2
D.9×211﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)當(dāng)m=7時(shí),求函數(shù)f(x)的定義域;
(2)若關(guān)于x的不等式f(x)≥2的解集是R,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1 , F2為橢圓E的左右焦點(diǎn),點(diǎn)P(1, )為其上一點(diǎn),且有|PF1|+|PF2|=4
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過F1的直線l1與橢圓E交于A,B兩點(diǎn),過F2與l1平行的直線l2與橢圓E交于C,D兩點(diǎn),求四邊形ABCD的面積SABCD的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)采取隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊擊中目標(biāo)的概率.先由計(jì)算器給出0到9之間取整數(shù)的隨機(jī)數(shù),指定0,1,2,3表示沒有擊中目標(biāo),4,5,6,7,8,9表示集中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組如下的隨機(jī)數(shù): 7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據(jù)以上數(shù)據(jù)估計(jì)該運(yùn)動(dòng)員射擊四次至少擊中三次的概率為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ
(Ⅰ)求曲線C1的普通方程和C2的直角坐標(biāo)方程;
(Ⅱ)已知曲線C3的極坐標(biāo)方程為θ=α,0<α<π,ρ∈R,點(diǎn)A是曲線C3與C1的交點(diǎn),點(diǎn)B是曲線C3與C2的交點(diǎn),且A,B均異于原點(diǎn)O,且|AB|=4 ,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.

(1)求圓的方程;

(2)若圓與直線交于兩點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)f(x)= (其中e為自然對數(shù)的底數(shù)),h(x)=x﹣
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)設(shè)g(x)= ,.已知直線y= 是曲線y=f(x)的切線,且函數(shù)g(x)在(0,+∞)上是增函數(shù).
(i)求實(shí)數(shù)a的值;
(ii)求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案