(2011•朝陽區(qū)三模)樣本中共有五個(gè)個(gè)體,其值分別為a,0,1,2,3.若該樣本的平均值為1,則樣本方差為
2
2
分析:根據(jù)平均數(shù)公式先求出a,再求出方差,開方得出標(biāo)準(zhǔn)差.
解答:解:由已知a,0,1,2,3,的平均數(shù)是3,即有(a+0+1+2+3)÷5=a,易得a=-1
根據(jù)方差計(jì)算公式得s2=
1
5
[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=
1
5
×10=2
故答案為:2
點(diǎn)評:本題考查了樣本數(shù)據(jù)平均數(shù)、方差、標(biāo)準(zhǔn)差的計(jì)算.屬于簡單題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)三模)如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=
1
2
AD=1,CD=
3

(Ⅰ)若點(diǎn)M是棱PC的中點(diǎn),求證:PA∥平面BMQ;
(Ⅱ)求證:平面PQB⊥平面PAD;
(Ⅲ)若二面角M-BQ-C為30°,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)三模)一空間幾何體的三視圖如圖所示,則該幾何體的體積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)三模)已知橢圓
x2
4
+y2=1
的焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓上一點(diǎn),且∠F1PF2=90°,則點(diǎn)P的縱坐標(biāo)可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)三模)右圖是一個(gè)幾何體的三視圖(單位:cm),根據(jù)圖中數(shù)據(jù),可得該幾何體的體積是
4
4

查看答案和解析>>

同步練習(xí)冊答案