已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是,點(diǎn)到直線的距離為,過(guò)點(diǎn)且傾斜角為銳角的直線與橢圓交于兩點(diǎn),使得.
(1)求橢圓的方程;(2)求直線的方程.

(1)(2)

解析試題分析:(1)∵到直線的距離為,∴.
,所求橢圓的方程為.             5分
(2)設(shè),∵,∴
由∵在橢圓上,∴(取正值)
的斜率為!的方程為,即。
考點(diǎn):橢圓方程幾何性質(zhì)及直線和橢圓相交的位置關(guān)系
點(diǎn)評(píng):第二問(wèn)中的向量關(guān)系式常用坐標(biāo)表示,轉(zhuǎn)化為坐標(biāo)運(yùn)算,所以本題還可首先設(shè)出直線方程,與橢圓聯(lián)立找到根與系數(shù)的關(guān)系,再結(jié)合向量的坐標(biāo)表示求得交點(diǎn),從而確定直線

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知兩定點(diǎn)E(-2,0),F(2,0),動(dòng)點(diǎn)P滿足,由點(diǎn)P向x軸作垂線段PQ,垂足為Q,點(diǎn)M滿足,點(diǎn)M的軌跡為C.
(1)求曲線C的方程
(2)過(guò)點(diǎn)D(0,-2)作直線與曲線C交于A、B兩點(diǎn),點(diǎn)N滿足
(O為原點(diǎn)),求四邊形OANB面積的最大值,并求此時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn)的距離之比等于5.
(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;
(2)記(1)中的軌跡為,過(guò)點(diǎn)的直線所截得的線段的長(zhǎng)為8,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線的右頂點(diǎn)為A,右焦點(diǎn)為F,右準(zhǔn)線與軸交于點(diǎn)B,且與一條漸近線交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,,過(guò)點(diǎn)F的直線與雙曲線右支交于點(diǎn)
(Ⅰ)求此雙曲線的方程;
(Ⅱ)求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為橢圓的左、右焦點(diǎn),是橢圓上一點(diǎn),若
(1)求橢圓方程;
(2)若的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)點(diǎn)P是曲線C:上的動(dòng)點(diǎn),點(diǎn)P到點(diǎn)(0,1)的距離和它到
焦點(diǎn)F的距離之和的最小值為
(1)求曲線C的方程
(2)若點(diǎn)P的橫坐標(biāo)為1,過(guò)P作斜率為的直線交C與另一點(diǎn)Q,交x軸于點(diǎn)M,
過(guò)點(diǎn)Q且與PQ垂直的直線與C交于另一點(diǎn)N,問(wèn)是否存在實(shí)數(shù)k,使得直線MN與曲線C
相切?若存在,求出k的值,若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在直角坐標(biāo)系xOy中,橢圓C1: ="1" (a>b>0)的左、右焦點(diǎn)分別為F1、F2, F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=.
(1)求C1的方程;
(2)直線l∥OM,與C1交于A、B兩點(diǎn),若·=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線的離心率為2,焦點(diǎn)與橢圓的焦點(diǎn)相同,求雙曲線的方程及焦點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿分12分)已知橢圓的一個(gè)頂點(diǎn)為B,離心率,
直線l交橢圓于M、N兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(II)如果ΔBMN的重心恰好為橢圓的右焦點(diǎn)F,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案