【題目】為了解少年兒童的肥胖是否與常喝碳酸飲料有關,現(xiàn)對30名六年級學生進行了問卷調(diào)查得到如下列聯(lián)表:平均每天喝500以上為常喝,體重超過50為肥胖

常喝

不常喝

合計

肥胖

2

不肥胖

18

合計

30

已知在全部30人中隨機抽取1人,抽到肥胖的學生的概率為

(1)請將上面的列聯(lián)表補充完整;

(2)是否有的把握認為肥胖與常喝碳酸飲料有關?說明你的理由;

(3)已知常喝碳酸飲料且肥胖的學生中有2名女生,現(xiàn)從常喝碳酸飲料且肥胖的學生抽取2人參加電視節(jié)目,則正好抽到一男一女的概率是多少?

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:其中

【答案】(1)列聯(lián)表見解析;(2)有的把握認為肥胖與常喝碳酸飲料有關;(3).

【解析】

試題分析:(1)根據(jù)題中不常喝碳酸飲料的肥胖人數(shù)和不肥胖人數(shù)及總?cè)藬?shù)即可完成列聯(lián)表;(2)利用公式求出的值,與臨界值比較即可得到把握性大;(3)設常喝碳酸飲料的肥胖者男生為、、、,女生為、,列舉出任選兩人的所有取法,從中找出正好抽到一男一女的取法即得概率.

試題解析:(1)設常喝碳酸飲料肥胖的學生有人,,

常喝

不常喝

合計

肥胖

6

2

8

不肥胖

4

18

22

合計

10

20

30

(2)由已知數(shù)據(jù)可求得:,因此有的把握認為肥胖與常喝碳酸飲料有關.

(3)設常喝碳酸飲料的肥胖者男生為、,女生為,則任取兩人有,,,,,,,,,,,,共15種,

其中一男一女有,,,,,,共8種,

故抽出一男一女的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系上放置一個邊長為1的正方形,此正方形沿軸滾動(向左或向右均可),滾動開始時,點位于原點處,設頂點的縱坐標與橫坐標的函數(shù)關系式,,該函數(shù)相鄰兩個零點之間的距離為.

(1)寫出的值并求出頂點的最小運動路徑的長度的值;

(2)寫出函數(shù),的表達式;并研究該函數(shù)除周期外的基本性質(zhì)(無需證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為Ⅰ)求曲線的直角坐標方程,并指出其表示何種曲線;(Ⅱ)設直線與曲線交于兩點,若點的直角坐標為,試求當時,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】清華大學自主招生考試題中要求考生從A,B,C三道題中任選一題作答,考試結(jié)束后,統(tǒng)計數(shù)據(jù)顯示共有600名學生參加測試,選擇AB,C三題答卷數(shù)如下表:


A

B

C

答卷數(shù)

180

300

120

)負責招生的教授為了解參加測試的學生答卷情況,現(xiàn)用分層抽樣的方法從600份答案中抽出若干份答卷,其中從選擇A題作答的答卷中抽出了3份,則應分別從選擇B,C題作答的答卷中各抽出多少份?

)測試后的統(tǒng)計數(shù)據(jù)顯示,A題的答卷得優(yōu)的有60份,若以頻率作為概率,在()問中被抽出的選擇A題作答的答卷中,記其中得優(yōu)的份數(shù)為,求的分布列及其數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下四個命題中:①在回歸分析中,可用相關系數(shù)r的值判斷模型的擬合效果,|r|越大,模擬的擬合效果越好;②在一組樣本數(shù)據(jù)不全相等)的散點圖中,若所有樣本點都在直線上,則這組樣本數(shù)據(jù)的線性相關系數(shù)為;③對分類變量xy的隨機變量來說,越小,判斷xy有關系的把握程度越大.其中真命題的個數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,直線與橢圓C交于AB兩點,且

(1)求橢圓C的方程.

(2)不經(jīng)過點的直線被圓截得的弦長與橢圓C的長軸長相等,且直線與橢圓C交于D,E兩點,試判斷的周長是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的定義域;

2)求函數(shù)在區(qū)間內(nèi)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù))在內(nèi)有兩個極值點,

(1)求實數(shù)的取值范圍;

(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知奇函數(shù)在定義域上單調(diào)遞增,若對任意的成立,則實數(shù)的最小值為__________

查看答案和解析>>

同步練習冊答案