【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(Ⅰ)求曲線的直角坐標(biāo)方程,并指出其表示何種曲線;(Ⅱ)設(shè)直線與曲線交于兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,試求當(dāng)時(shí),的值.
【答案】(1)曲線的直角坐標(biāo)方程為它表示以為圓心、為半徑的圓.(2)
【解析】試題分析:(1)利用參普互化公式將曲線C的方程化為一般方程,進(jìn)而得到圓心半徑;(2)聯(lián)立直線和園的方程,得到關(guān)于t的二次,,由韋達(dá)定理得到結(jié)果.
詳解:
(Ⅰ)曲線:,可以化為 ,
因此,曲線的直角坐標(biāo)方程為
它表示以為圓心、為半徑的圓.
(Ⅱ)當(dāng)時(shí),直線的參數(shù)方程為(為參數(shù))
點(diǎn) 在直線上,且在圓內(nèi),把
代入中得
設(shè)兩個(gè)實(shí)數(shù)根為,則兩點(diǎn)所對(duì)應(yīng)的參數(shù)為,
則,,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過設(shè)計(jì)下面的實(shí)驗(yàn)來估計(jì)π的值:先請(qǐng)200名同學(xué),每人隨機(jī)寫下一個(gè)都小于1 的正實(shí)數(shù)對(duì)(x,y);再統(tǒng)計(jì)兩數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對(duì)(x,y)的個(gè)數(shù)m;最后再根據(jù)統(tǒng)計(jì)數(shù)m來估計(jì)π的值.假如統(tǒng)計(jì)結(jié)果是m=56,那么可以估計(jì)π≈ . (用分?jǐn)?shù)表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|x﹣2|.
(Ⅰ)求不等式f(x)≥1的解集;
(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在海岸A處,發(fā)現(xiàn)北偏東方向,距離A為 n mile的B處有一艘走私船,在A處北偏西方向,距離A為2 n mile的C處有一艘緝私艇奉命以n mile / h的速度追截走私船,此時(shí),走私船正以10 n mile / h的速度從B處向北偏東方向逃竄,問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時(shí)間。(本題解題過程中請(qǐng)不要使用計(jì)算器,以保證數(shù)據(jù)的相對(duì)準(zhǔn)確和計(jì)算的方便)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在心理學(xué)研究中,常采用對(duì)比試驗(yàn)的方法評(píng)價(jià)不同心理暗示對(duì)人的影響,具體方法如下:將參加試驗(yàn)的志愿者隨機(jī)分成兩組,一組接受甲種心理暗示,另一組接受乙種心理暗示,通過對(duì)比這兩組志愿者接受心理暗示后的結(jié)果來評(píng)價(jià)兩種心理暗示的作用,現(xiàn)有6名男志愿者A1 , A2 , A3 , A4 , A5 , A6和4名女志愿者B1 , B2 , B3 , B4 , 從中隨機(jī)抽取5人接受甲種心理暗示,另5人接受乙種心理暗示.(12分)
(Ⅰ)求接受甲種心理暗示的志愿者中包含A1但不包含B1的概率.
(Ⅱ)用X表示接受乙種心理暗示的女志愿者人數(shù),求X的分布列與數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:(x+1)(x-5)≤0,命題q:1-m≤x<1+m(m>0).
(1)若p是q的充分條件,求實(shí)數(shù)m的取值范圍;
(2)若m=5,如果p和q有且僅有一個(gè)真命題,求實(shí)數(shù)x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某海濱浴場(chǎng)海浪的高度(米)是時(shí)間的(,單位:小時(shí))函數(shù),記作,下表是某日各時(shí)的浪高數(shù)據(jù):
(時(shí)) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 0.99 | 1.5 |
經(jīng)長(zhǎng)期觀察,的曲線,可以近似地看成函數(shù)的圖象.
(1)根據(jù)以上數(shù)據(jù),求出函數(shù)近似表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于米時(shí)才對(duì)沖浪愛好者開放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午時(shí)至晚上時(shí)之間,有多少時(shí)間可供沖浪者進(jìn)行運(yùn)動(dòng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)內(nèi)有一塊以為圓心半徑為20米的圓形區(qū)域.廣場(chǎng),為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計(jì)方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺(tái),舞臺(tái)為扇形區(qū)域,其中兩個(gè)端點(diǎn),分別在圓周上;觀眾席為梯形內(nèi)且在圓外的區(qū)域,其中,,且,在點(diǎn)的同側(cè).為保證視聽效果,要求觀眾席內(nèi)每一個(gè)觀眾到舞臺(tái)處的距離都不超過60米.設(shè).
(1)求的長(zhǎng)(用表示);
(2)對(duì)于任意,上述設(shè)計(jì)方案是否均能符合要求?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com