已知橢圓的右焦點(diǎn)為F,右準(zhǔn)線(xiàn)為l,且直線(xiàn)y=x與l相交于A點(diǎn).
(Ⅰ)若⊙C經(jīng)過(guò)O、F、A三點(diǎn),求⊙C的方程;
(Ⅱ)當(dāng)m變化時(shí),求證:⊙C經(jīng)過(guò)除原點(diǎn)O外的另一個(gè)定點(diǎn)B;
(Ⅲ)若<5時(shí),求橢圓離心率e的范圍.
【答案】分析:(Ⅰ)由題意求出右焦點(diǎn)的坐標(biāo)和有準(zhǔn)線(xiàn)的方程,再求出A點(diǎn)的坐標(biāo),用待定系數(shù)法求圓C的方程,設(shè)為一般方程更好計(jì)算.
(Ⅱ)根據(jù)點(diǎn)在圓上,點(diǎn)的坐標(biāo)滿(mǎn)足圓的方程,設(shè)點(diǎn)B的坐標(biāo)代入圓C的方程,把含有m的整理在一起后,列出方程求解.
(Ⅲ)由(Ⅰ)和(Ⅱ)求的結(jié)果和數(shù)量積的坐標(biāo)表示,用m表示所給的不等式,求出范圍;再有橢圓的方程本身的幾何意義,求m出的范圍,兩個(gè)范圍再求交集,最后用m表示離心率求出范圍.
解答:解:(Ⅰ)∵a2=m2+m,b2=m,
∴c2=m2,即c=m,∴F(m,0),準(zhǔn)線(xiàn)x=1+m,
∵直線(xiàn)y=x與右準(zhǔn)線(xiàn)為l相交于A點(diǎn)
∴A(1+m,1+m)
設(shè)⊙C的方程為x2+y2+Dx+Ey+F=0,
將O、F、A三點(diǎn)坐標(biāo)代入得:,
解得
∴⊙C的方程為x2+y2-mx-(2+m)y=0;
(Ⅱ)設(shè)點(diǎn)B坐標(biāo)為(p,q),
則p2+q2-mp-(2+m)q=0,
整理得:p2+q2-2q-m(p+q)=0對(duì)任意實(shí)數(shù)m都成立.
,解得
故當(dāng)m變化時(shí),⊙C經(jīng)過(guò)除原點(diǎn)O外的另外一個(gè)定點(diǎn)B(-1,1);
(Ⅲ)由B(-1,1)、F(m,0)、A(1+m,1+m)得
=(-1,-1-m),=(-2-m,-m)
=m2+2m+2<5,解得-3<m<1
又∵,∴0<m<1
∴橢圓的離心率(0<m<1)
∴橢圓的離心率的范圍是
點(diǎn)評(píng):本題用待定系數(shù)法求圓的方程和證明圓C過(guò)定點(diǎn),求圓的方程時(shí)設(shè)一般方程計(jì)算簡(jiǎn)單;再求離心率的范圍時(shí),容易出差橢圓方程本身隱含的條件,即a2>0,b2>0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的右焦點(diǎn)為F,右準(zhǔn)線(xiàn)為l,A、B是橢圓上兩點(diǎn),且|AF|:|BF|=3:2,直線(xiàn)AB與l交于點(diǎn)C,則B分有向線(xiàn)段
AC
所成的比為( 。
A、
1
2
B、2
C、
2
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)二模理)如圖,已知橢圓的右焦點(diǎn)為F,過(guò)F的直線(xiàn)(非x軸)交橢圓于M、N兩點(diǎn),右準(zhǔn)線(xiàn)x軸于點(diǎn)K,左頂點(diǎn)為A.

(1)求證:KF平分∠MKN;

(2)直線(xiàn)AM、AN分別交準(zhǔn)線(xiàn)于點(diǎn)P、Q,設(shè)直線(xiàn)MN的傾斜角為,試用表示線(xiàn)段PQ的長(zhǎng)度|PQ|,并求|PQ|的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(14分)已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線(xiàn)恰好與圓相切。

  (1)已知橢圓的離心率;

  (2)若的最大值為49,求橢圓C的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(重慶卷)數(shù)學(xué)理工類(lèi)模擬試卷(三) 題型:解答題

如圖,已知橢圓的右焦點(diǎn)為F,過(guò)F的直線(xiàn)(非x軸)交橢圓于M、N兩點(diǎn),右準(zhǔn)線(xiàn)x軸于點(diǎn)K,左頂點(diǎn)為A

    (Ⅰ)求證:KF平分∠MKN;

   (Ⅱ)直線(xiàn)AM、AN分別交準(zhǔn)線(xiàn)于點(diǎn)P、Q,

設(shè)直線(xiàn)MN的傾斜角為,試用表示

線(xiàn)段PQ的長(zhǎng)度|PQ|,并求|PQ|的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省高考沖刺強(qiáng)化訓(xùn)練試卷十三文科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分14分)已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線(xiàn)恰好與圓相切.

  (Ⅰ)求橢圓的離心率;

  (Ⅱ)若的最大值為49,求橢圓C的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案