2.設(shè)a=log48,b=log0.48,c=20.4,則(  )
A.b<c<aB.c<b<aC.c<a<bD.b<a<c

分析 b底大于0小于1而真數(shù)大于1⇒b<0,=log48=$\frac{3}{2}$,c=0.4<20.5=$\sqrt{2}<\frac{3}{2}$

解答 解:∵b底大于0小于1而真數(shù)大于1∴b<0
∵a=log48=$\frac{3}{2}$ 
c=20.4<20.5=$\sqrt{2}<\frac{3}{2}$,∴a>c>b
故選:A

點(diǎn)評(píng) 本題考查了判斷大小的方法,涉及到了對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),找中間值是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\frac{{\sqrt{x-3}}}{x-4}$的定義域是[3,4)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={0,1,2},集合B={-1,2},則A∪B=( 。
A.{-1,0,1,2}B.{2}C.{-1,1,2}D.{-1,0,1,2,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,AB⊥BC,AB=PA=PD=3,CD=1,BC=4,E為線段AB上一點(diǎn),AE=$\frac{1}{2}$BE,F(xiàn)為PD的中點(diǎn).
(1)證明:PE∥平面ACF;
(2)求二面角A-CF-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知曲線y=$\frac{x^2}{4}$-lnx的一條切線的斜率為-$\frac{1}{2}$,則切點(diǎn)的橫坐標(biāo)為( 。
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=ax2-2x+2,對(duì)于滿足1<x<4的一切x值都有f(x)>0,則實(shí)數(shù)a的取值范圍為$({\frac{1}{2},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在△ABC中,B=$\frac{π}{4}$,BC邊上的高等于$\frac{1}{3}$BC,則cosA=-$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,且有(2+b)(sinA-sinB)=(c-b)sinC.
(Ⅰ)求角A的值;
(Ⅱ)求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知關(guān)于x的不等式|x+1|+|x-1|<4的解集為M.
(1)設(shè)Z是整數(shù)集,求Z∩M;
(2)當(dāng)a,b∈M時(shí),證明:2|a+b|<|4+ab|.

查看答案和解析>>

同步練習(xí)冊(cè)答案