18.若$\overrightarrow{a}$=(4,3),$\overrightarrow$=(-5,12),則$\overrightarrow{a}$在$\overrightarrow$上的投影為$\frac{16}{13}$.

分析 利用$|\overrightarrow{a}|$cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$,即可得出.

解答 解:∵$\overrightarrow{a}•\overrightarrow$=-20+36=16=$|\overrightarrow{a}|$$|\overrightarrow|$cosθ,$|\overrightarrow|$=$\sqrt{(-5)^{2}+1{2}^{2}}$=13.
∴$|\overrightarrow{a}|$cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{16}{13}$,
故答案為:$\frac{16}{13}$.

點評 本題考查了向量的數(shù)量積運算性質、向量夾角公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{3}({sin^2}x-{cos^2}x)+2sinxcosx$.
(1)求f(x)最小正周期;
(2)設$x∈[-\frac{π}{3},\;\frac{π}{3}]$,求f(x)的值域和單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設z為純虛數(shù),且|z-1|=|-1+i|,則z=±i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列關系式正確的是( 。
A.$\overrightarrow{AB}$+$\overrightarrow{BA}$=0B.$\overrightarrow a$•$\overrightarrow b$是一個向量C.$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$D.0•$\overrightarrow{AB}$=$\overrightarrow 0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.雙曲線$\frac{x^2}{5}$-$\frac{{y{\;}^2}}{4}$=1的焦點坐標為( 。
A.(3,0)和(-3,0)B.(2,0)和(-2,0)C.(0,3)和(0,-3)D.(0,2)和(0,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.(1)用分析法證明不等式:$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2;
(2)用綜合法證明不等式:若a+b+c=1,則ab+bc+ac≤$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設數(shù)列{bn}的前n項和為Sn,且bn=2-2Sn;數(shù)列{an}為等差數(shù)列,且a5=10,a7=14.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)若cn=$\frac{1}{4}$anbn,Tn為數(shù)列{cn}的前n項和.求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結構,調整出x(x∈N*)名員工從事第三產(chǎn)業(yè),調整后他們平均每人每年創(chuàng)造利潤為10(a-$\frac{3x}{500}}$)萬元(a>0),剩下的員工平均每人每年創(chuàng)造的利潤為原來(1+$\frac{x}{500}}$)倍.
(Ⅰ)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多可以調整出多少名員工從事第三產(chǎn)業(yè);
(Ⅱ)若調整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則a的最大取值是多少.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.拋物線y2=2x與直線l相交于A,B兩點,且$\overrightarrow{OA}⊥\overrightarrow{OB}$,則直線恒過定點(2,0).

查看答案和解析>>

同步練習冊答案