設(shè)f(x)=cosx-sinx把f(x)的圖象按向量平移后,圖象恰好為函數(shù)f(x)=sinx+cosx的圖象,則m的值可以為( )
A.
B.
C.π
D.
【答案】分析:利用兩角差和的余弦函數(shù)化簡(jiǎn)函數(shù)f(x)=cosx-sinx,然后按照向量 平移后的圖象,推出函數(shù)表達(dá)式;f(x)=sinx+cosx,就是y=cos(x-),利用兩個(gè)函數(shù)表達(dá)式相同,即可求出m的最小值.
解答:解:函數(shù)f(x)=cosx-sinx=cos(x+),
圖象按向量 平移后,
得到函數(shù)f(x)=cos(x-m+);
函數(shù)y=sinx+cosx=cos(x-),
因?yàn)閮蓚(gè)函數(shù)的圖象相同,
所以-m+=-+2kπ,k∈Z,
所以當(dāng)k=0時(shí),m=,
故選D.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查三角函數(shù)的化簡(jiǎn),兩角和與差的余弦函數(shù),向量的平移等知識(shí),基本知識(shí)的掌握程度決定解題能力的高低,可見(jiàn)功在平時(shí)的重要性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=cosx-sinx把y=f(x)的圖象按向量
a
=(φ,0)(φ>0)平移后,恰好得到函數(shù)y=f′(x)的圖象,則φ的值可以為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=cosx-sinx,把y=f(x)的圖象向左平移α(α>0)個(gè)單位后,恰好得到函數(shù)y=-f(x)的圖象,則α的值可以為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=cosx-sinx,把f(x)的圖象向右平移m(m>0)后,圖象恰好為函數(shù)y=-f'(x)的圖象,則m的值可以為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x),g(x)滿足關(guān)系g(x)=f(x)•f(x+α)其中α是常數(shù).
(1)設(shè)f(x)=cosx+sinx,α=
π
2
,求g(x)的解析式;
(2)設(shè)計(jì)一個(gè)函數(shù)f(x)及一個(gè)α(0<α<π)的值使得g(x)=
1
2
sin2x;
(3)設(shè)常數(shù)α=0,f(x)=
kx 
(0<k<1),并已知0<x1<x2
π
2
時(shí),總有
sinx1
x1
sinx2
x2
成立,當(dāng)x∈( 0,
π
2
)
時(shí),試比較sin[g(x)]與g(sinx)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=cosx-sinx把f(x)的圖象按向量
a
=(m,0)(m>0)
平移后,圖象恰好為函數(shù)f(x)=sinx+cosx的圖象,則m的值可以為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案