如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A、B,將直線AB按向量平移到直線l,N為l上的動點.
(1)若|AB|=8,求拋物線的方程;
(2)求的最小值.

【答案】分析:(1)根據(jù)拋物線的定義得到|AB|=x1+x2+p=4p,再由已知條件,得到拋物線的方程;
(2)設直線l的方程及N點坐標和A(x1,y1),B(x2,y2),利用向量坐標運算,求得
的以N點坐標表示的函數(shù)式,利用二次函數(shù)求最值的方法,可求得所求的最小值.
解答:解:(1)由條件知,則,消
去y得:,則x1+x2=3p,
由拋物線定義得|AB|=x1+x2+p=4p
又因為|AB|=8,即p=2,則拋物線的方程為y2=4x.
(2)直線l的方程為:,于是設,A(x1,y1),B(x2,y2


由第(1)問的解答結合直線方程,不難得出
且y1+y2=x1+x2-p=2p,

時,的最小值為
點評:此題考查拋物線的定義,及向量坐標運算.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A、B,M為拋物線弧AB上的動點.
(1)若|AB|=8,求拋物線的方程;
(2)求S△ABM的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,斜率為1的直線過拋物線Ω:y2=2px(p>0)的焦點F,與拋物線交于兩點A,B,
(1)若|AB|=8,求拋物線Ω的方程;
(2)設C為拋物線弧AB上的動點(不包括A,B兩點),求△ABC的面積S的最大值;
(3)設P是拋物線Ω上異于A,B的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A、B,將直線AB按向量
a
=(-p,0)
平移得到直線l,N為l上的動點,M為拋物線弧AB上的動點.
(Ⅰ) 若|AB|=8,求拋物線方程.
(Ⅱ)求S△ABM的最大值.
(Ⅲ)求
NA
NB
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點,與拋物線交于兩點A、B,將直線AB按向量
a
=(-p,0)
平移到直線l,N為l上的動點.
(1)若|AB|=8,求拋物線的方程;
(2)求
NA
NB
的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:山東省棗莊市2010屆高三年級調研考試數(shù)學(文科)試題 題型:解答題

(本題滿分12分)

如圖,斜率為1的直線過拋物線的焦點F,與拋物線交于兩點A,B。

   (1)若|AB|=8,求拋物線的方程;

   (2)設C為拋物線弧AB上的動點(不包括A,B兩點),求的面積S的最大值;

   (3)設P是拋物線上異于AB的任意一點,直線PA,PB分別交拋物線的準線于M,N兩點,證明M,N兩點的縱坐標之積為定值(僅與p有關)

 

查看答案和解析>>

同步練習冊答案