在△ABC中,已知∠A=120°,AB=AC=2,D是BC邊的中點(diǎn),若P是線段AD上任意一點(diǎn),則的最小值為   
【答案】分析:通過解直角三角形求出邊BC,建立直角坐標(biāo)系,寫出各點(diǎn)的坐標(biāo),求出三個(gè)向量的坐標(biāo),利用向量的數(shù)量積公式求出,利用二次函數(shù)的對(duì)稱軸公式求出對(duì)稱軸,求出二次函數(shù)的最小值.
解答:解:∵∠A=120°,AB=AC=2,
∴BC=2×2sin60°=2
以DA為y軸,以BC為x軸,建立直角坐標(biāo)系則
B(-),C(  A(0,1)
設(shè)P(0,y)
所以

所以(0≤y≤1)
對(duì)稱軸為
所以當(dāng)時(shí),最小值為
故答案為:
點(diǎn)評(píng):本題考查通過建立直角坐標(biāo)系轉(zhuǎn)化為坐標(biāo)形式的向量問題、考查向量坐標(biāo)的求法、考查向量的數(shù)量積公式、考查二次函數(shù)的最值的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=30°,B=120°,b=12,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=
2
,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知高AN和BM所在直線方程分別為x+5y-3=0和x+y-1=0,邊AB所在直線方程x+3y-1=0,求直線BC,CA及AB邊上的高所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知lgsinA-lgcosB-lgsinC=lg2,則三角形一定是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=1,c=3,A=120°,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案