9.如圖,在△ABC中,N、P分別是AC、BN的中點(diǎn),設(shè)$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,則$\overrightarrow{AP}$=(  )
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$B.-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$C.-$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$D.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$

分析 根據(jù)向量的加減的幾何意義和三角形法則即可求出.

解答 解:$\overrightarrow{AP}$=$\overrightarrow{AB}$+$\overrightarrow{BP}$=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{BN}$,
=-$\overrightarrow{BA}$+$\frac{1}{2}$($\overrightarrow{BC}$-$\overrightarrow{NC}$),
=-$\overrightarrow{BA}$+$\frac{1}{2}$($\overrightarrow{BC}$-$\frac{1}{2}$$\overrightarrow{AC}$),
=-$\overrightarrow{BA}$+$\frac{1}{2}$$\overrightarrow{BC}$-$\frac{1}{4}$($\overrightarrow{AB}$+$\overrightarrow{BC}$),
=-$\frac{3}{4}$$\overrightarrow{BA}$+$\frac{1}{4}$$\overrightarrow{BC}$,
=-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$,
故選:B

點(diǎn)評(píng) 本題考查了向量的加減的幾何意義和三角形法則,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^{x-1}},x>1\\ tan\frac{πx}{3},x≤1\end{array}\right.$則$f(\frac{1}{f(2)})$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某學(xué)校需從3名男生和2名女生中選出4人,分派到甲、乙、丙三地參加義工活動(dòng),其中甲地需要選派2人且至少有1名女生,乙地和丙地各需要選派1人,則不同的選派方法的種數(shù)是( 。
A.18B.24C.36D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖(1)所示,已知四邊形SBCD是由直角△SAB和直角梯形ABCD拼接而成的,其中∠SAB=∠SDC=90°,且點(diǎn)A為線段SD的中點(diǎn),AD=2DC=1,AB=SD,現(xiàn)將△SAB沿AB進(jìn)行翻折,使得二面角S-AB-C的大小為90°,得到的圖形如圖(2)所示,連接SC,點(diǎn)E、F分別在線段SB、SC上.
(Ⅰ)證明:BD⊥AF;
(Ⅱ)若三棱錐B-AEC的體積是四棱錐S-ABCD體積的$\frac{2}{5}$,求點(diǎn)E到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=sin(πx+θ)(|θ|<$\frac{π}{2}$)的部分圖象如圖,且f(0)=-$\frac{1}{2}$,則圖中m的值為( 。
A.1B.$\frac{4}{3}$C.2D.$\frac{4}{3}$或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=|x+2|+|x-m|.
(1)當(dāng)m=6時(shí),解不等式f(x)≥12;
(2)已知a>0,b>0,且$\frac{1}{a}$+$\frac{1}$=$\sqrt{ab}$,若對(duì)于?a,b∈R*,?x0使f(x0)≤ab成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=2sinωx-4sin2$\frac{ωx}{2}$+2+m(其中ω>0,m∈R),且當(dāng)x=$\frac{1}{2}$時(shí),f(x)的圖象在y軸右側(cè)得到第一個(gè)最高點(diǎn).
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)若f(x)在區(qū)間[2,4]上的最大值為5,最小值是p,求m和p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)奇函數(shù)f(x)在區(qū)間[-7,-3]上是減函數(shù)且最小值為-6,函數(shù)g(x)=$\frac{ax+1}{x+2}$,其中a<$\frac{1}{2}$.
(1)判斷函數(shù)g(x)在(-2,+∞)上的單調(diào)性,并用定義法證明;
(2)求函數(shù)F(x)=f(x)+g(x)在區(qū)間[3,7]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(-1,2),若$\overrightarrow{a}$⊥$\overrightarrow$,則$\overrightarrow{a}$在向量$\overrightarrow{c}$=$\overrightarrow{a}$+$\overrightarrow$上的投影為( 。
A.$\frac{\sqrt{5}}{2}$B.-$\frac{\sqrt{10}}{2}$C.-$\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案