設(shè)函數(shù)在(,+)內(nèi)有意義.對(duì)于給定的正數(shù)K,已知函數(shù),取函數(shù)=.若對(duì)任意的(,+),恒有=,則K的最小值為 .
2
解析試題分析:根據(jù)新定義的函數(shù)建立fk(x)與f(x)之間的關(guān)系,通過二者相等得出實(shí)數(shù)k滿足的條件,利用導(dǎo)數(shù)或者函數(shù)函數(shù)的單調(diào)性求解函數(shù)的最值,進(jìn)而求出k的范圍,進(jìn)一步得出所要的結(jié)果.根據(jù)題意,函數(shù)在(,+)內(nèi)有意義.對(duì)于給定的正數(shù)K,已知函數(shù),那么可知=,導(dǎo)函數(shù)為 ,當(dāng)x<0,f’(x)>0;當(dāng)x>0,f’(x)<0,那么可知函數(shù)的單調(diào)性為x<0,遞增,x>0,遞減,那么可知在x=0處取得最大值,即為f(0)=3-1=2,那么可知?jiǎng)tK的最小值為2,答案為2.
考點(diǎn):導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對(duì)數(shù)學(xué)思維的要求比較高,有一定的探索性.解題時(shí)要認(rèn)真審題,仔細(xì)解答
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com