分析:(I)利用等比數(shù)列的通項(xiàng)公式可求得a
n,利用對(duì)數(shù)性質(zhì)可求得
loga
n=n,從而可求得b
n=3n-2,利用b
n+1-b
n為定值即可;
(II)由于c
n=(3n-2)•
()n,S
n=c
1+c
2+…+c
n,利用錯(cuò)位相減法即可求得S
n.
解答:解:(I)證明:∵a
1=
,公比q=
,
∴a
n=
•
()n-1=
()n,
∴
loga
n=n,
又b
n+2=3
loga
n=3n,
∴b
n=3n-2,b
1=1,
∴b
n+1=3(n+1)-2,
∴b
n+1-b
n=3,
∴{b
n}是1為首項(xiàng),3為公差的等差數(shù)列;
(II)由(Ⅰ)知b
n=3n-2,a
n=
()n,
∴c
n=a
n•b
n=(3n-2)•
()n,
∴S
n=1×
()1+4×
()2+7×
()3+…+(3n-2)×
()n ①
S
n=1×
()2+4×
()3+7×
()4+…+(3n-5)×
()n+(3n-2)×
()n+1②
故①-②得:
S
n=1×
+3×
()2+3×
()3+3×
()4+…+3×
()n-(3n-2)×
()n+1∴
S
n=
+3×
-(3n-2)×
()n+1=2-
,
∴S
n=4-
.
點(diǎn)評(píng):本題考查等差數(shù)關(guān)系的確定,考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式,考查數(shù)列求和,著重考查錯(cuò)位相減法,考查推理與運(yùn)算能力,屬于難題.