分析 (Ⅰ)根據(jù)面面垂直的性質定理證明平面PAD⊥平面ABCD即可證明CD⊥平面PAD;
(Ⅱ)根據(jù)點到平面的距離的定義作出點F到平面的距離,結合三角形的邊角關系進行求解即可.
解答 解:(Ⅰ)∵AB=1,AD=2,BD=$\sqrt{3}$,
∴cos∠ADB=$\frac{A{D}^{2}+B{D}^{2}-A{B}^{2}}{2AD•BD}$=$\frac{\sqrt{3}}{2}$,
則∠ADB=30°,
∵△BCD是等邊三角形,∴∠BDC=60°,
∴∠ADC=∠ADB+∠BDC=90°,即CD⊥AD,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
CD?平面ABCD,
∴CD⊥平面PAD
(Ⅱ) 在平面ABCD內過B作BG∥CD,交AD于G,BG?平面PCD,CD?平面PCD,
則BG∥平面PCD,
由(1)得CD⊥AD,∴BG⊥AD,
連接GF,
∵BF∥平面PCD,BF,BG?平面FBG,BF∩BG=B,
∴平面FBG∥平面PCD,
∵平面PAD分別交平面FBG,PCD于FG,PD,
∴FG∥PD,
∴$\frac{PF}{PA}=\frac{DG}{DA}$,
則直角三角形BGD中,BD=$\sqrt{3}$,∠BDG=30°,
DG=BDcos30°=$\frac{3}{2}$,
∴$\frac{PF}{PA}=\frac{DG}{DA}$=$\frac{\frac{3}{2}}{2}$=$\frac{3}{4}$,
在平面PAD內過F作FH⊥PD于H,
∵CD⊥平面PAD,面FHC?面PAD,
∴CD⊥FH,
∵PD,CD?平面PCD,PD∩CD=D,
∴FH⊥平面PCD于H,
則FH是點F到平面PCD的距離.
過A作AM⊥PD于M,
∵△PAD是邊長為2的等邊三角形,
∴AM=$\frac{\sqrt{3}}{2}×2$=$\sqrt{3}$,
∵FH∥AM,∴$\frac{FH}{AM}$=$\frac{PF}{PA}=\frac{DG}{DA}$=$\frac{3}{4}$,
∴FH=$\frac{3}{4}$AM=$\frac{3\sqrt{3}}{4}$,
即點F到平面PCD的距離是$\frac{3\sqrt{3}}{4}$.
點評 本題主要考查考查空間直線和平面垂直的判斷以及點到直線的距離的計算,根據(jù)相應的判定定理和性質定理以及點到平面的距離的定義是解決本題的關鍵.綜合性較強,難度較大.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{32}{3}$ | B. | 16 | C. | $\frac{64}{3}$ | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8$\sqrt{6}$ | B. | 8$\sqrt{2}$ | C. | 8 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 直角梯形、面積是16$\sqrt{2}$ | B. | 直角梯形、面積是8 | ||
C. | 梯形非直角,面積是16 | D. | 梯形非直角,面積是8$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com