已知橢圓的右焦點(diǎn)為F2(1,0),點(diǎn) 在橢圓上.

(1)求橢圓方程;
(2)點(diǎn)在圓上,M在第一象限,過(guò)M作圓的切線交橢圓于P、Q兩點(diǎn),問(wèn)|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說(shuō)明理由.

(1);(2)|F2P|+|F2Q|+|PQ|是定值,等于4.

解析試題分析:(1)右焦點(diǎn)為,左焦點(diǎn)為,點(diǎn)在橢圓上,由橢圓的定義可得,再由可得,從而得橢圓的方程. (2)由于PQ與圓切于點(diǎn)M,故用切線長(zhǎng)公式求出PM、MQ,二者相加求得PQ.求,可用兩點(diǎn)間的距離公式,將它們相加,若是一個(gè)與點(diǎn)的坐標(biāo)無(wú)關(guān)的常數(shù),則是一個(gè)定值;否則,則不是定值.
試題解析:(1)右焦點(diǎn)為,
左焦點(diǎn)為,點(diǎn)在橢圓上


所以橢圓方程為               5分
(2)設(shè),

                       8分
連接OM,OP,由相切條件知:
                                 11分
同理可求
所以為定值。            13分
考點(diǎn):1、橢圓的方程;2、直線與圓錐曲線;3、圓的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓,直線與圓相切,且交橢圓兩點(diǎn),c是橢圓的半焦距, 
(1)求m的值;
(2)O為坐標(biāo)原點(diǎn),若,求橢圓的方程;
(3)在(2)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn),直線與直線分別交于M,N兩點(diǎn),求線段MN的長(zhǎng)度的最小值 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的離心率為,左、右焦點(diǎn)分別為,點(diǎn)G在橢圓C上,且,的面積為3.
(1)求橢圓C的方程:
(2)設(shè)橢圓的左、右頂點(diǎn)為A,B,過(guò)的直線與橢圓交于不同的兩點(diǎn)M,N(不同于點(diǎn)A,B),探索直線AM,BN的交點(diǎn)能否在一條垂直于軸的定直線上,若能,求出這條定直線的方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線過(guò)點(diǎn)且與拋物線交于A、B兩點(diǎn),以弦AB為直徑的圓恒過(guò)坐標(biāo)原點(diǎn)O.

(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)設(shè)是直線上任意一點(diǎn),求證:直線QA、QM、QB的斜率依次成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C=1(a>b>0)的兩個(gè)焦點(diǎn)F1,F2和上下兩個(gè)頂點(diǎn)B1,B2是一個(gè)邊長(zhǎng)為2且∠F1B1F2為60°的菱形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)過(guò)右焦點(diǎn)F2的斜率為k(k≠0)的直線l與橢圓C相交于E、F兩點(diǎn),A為橢圓的右頂點(diǎn),直線AE,AF分別交直線x=3于點(diǎn)M,N,線段MN的中點(diǎn)為P,記直線PF2的斜率為k′,求證: k·k′為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知平面五邊形關(guān)于直線對(duì)稱(如圖(1)),,,將此圖形沿折疊成直二面角,連接、得到幾何體(如圖(2))

(1)證明:平面;
(2)求平面與平面的所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點(diǎn),分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標(biāo)系,已知=λ=λ,其中0<λ<1.

(1)求證:直線ER與GR′的交點(diǎn)M在橢圓Γ:+y2=1上;
(2)若點(diǎn)N是直線l:y=x+2上且不在坐標(biāo)軸上的任意一點(diǎn),F(xiàn)1、F2分別為橢圓Γ的左、右焦點(diǎn),直線NF1和NF2與橢圓Γ的交點(diǎn)分別為P、Q和S、T.是否存在點(diǎn)N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為2,且.
(1)求拋物線的方程;
(2)過(guò)點(diǎn)作直線交拋物線于兩點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓經(jīng)過(guò)如下五個(gè)點(diǎn)中的三個(gè)點(diǎn):,,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點(diǎn)為橢圓的左頂點(diǎn),為橢圓上不同于點(diǎn)的兩點(diǎn),若原點(diǎn)在的外部,且為直角三角形,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案