如圖,四棱錐的底面是矩形,底面,邊的中點(diǎn),與平面所成的角為,且。

(1)求證:平面
(2)求二面角的大小的正切值.
(1)見(jiàn)解析(2)
本試題主要是考查了立體幾何中線(xiàn)面垂直的證明與二面角的平面角的求解。
(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231214769415.png" style="vertical-align:middle;" />底面,
所以,∠SBA是SB與平面ABCD所成的角
由已知∠SBA=45°,所以AB=SA=1  易求得,AP=PD=,
又因?yàn)锳D=2,所以AD2=AP2+PD2,所以,從而根據(jù)線(xiàn)面垂直的判定定理得到。
(2)
由于SA⊥底面ABCD,且SA平面SAD,
則平面SAD⊥平面PAD
因?yàn)镻Q⊥AD,所以PQ⊥平面SAD
過(guò)Q作QR⊥SD,垂足為R,連結(jié)PR,
由三垂線(xiàn)定理可知PR⊥SD,
所以∠PRQ是二面角A-SD-P的平面角,然后接合直角三角形得到求解。

證明:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823231214769415.png" style="vertical-align:middle;" />底面,
所以,∠SBA是SB與平面ABCD所成的角……………….1分
由已知∠SBA=45°,所以AB=SA=1  易求得,AP=PD=,…….2分
又因?yàn)锳D=2,所以AD2=AP2+PD2,所以.……….3分
因?yàn)镾A⊥底面ABCD,平面ABCD,
所以SA⊥PD,               ……………....4分
由于SA∩AP=A    所以平面SAP.………………… 5分
(2)設(shè)Q為AD的中點(diǎn),連結(jié)PQ,       ……………………………6分
由于SA⊥底面ABCD,且SA平面SAD,
則平面SAD⊥平面PAD……..7分
因?yàn)镻Q⊥AD,所以PQ⊥平面SAD
過(guò)Q作QR⊥SD,垂足為R,連結(jié)PR,
由三垂線(xiàn)定理可知PR⊥SD,
所以∠PRQ是二面角A-SD-P的平面角.…9分
容易證明△DRQ∽△DAS,則 因?yàn)镈Q=1,SA=1,
所以…….10分  在Rt△PRQ中,因?yàn)镻Q=AB=1,
所以 所以二面角A-SD-P的大小的正切值為.13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)在如圖所示的幾何體中,四邊形ABCD為平行四邊形,∠ ACB=,EF∥AB,F(xiàn)G∥BC,EG∥AC. AB="2EF." 若M是線(xiàn)段AD的中點(diǎn)。求證:GM∥平面ABFE 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,幾何體是四棱錐,△為正三角形,.
(1)求證:;
(2)若∠,M為線(xiàn)段AE的中點(diǎn),求證:∥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題8分)如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為正方形,
PA=AB=2,M, N分別為PA, BC的中點(diǎn).

(Ⅰ)證明:MN∥平面PCD;
(Ⅱ)求MN與平面PAC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題10分)如圖已知在三棱柱ABC——A1B1C1中,AA1⊥面ABC,AC=BC,M、N、P、Q分別是AA1、BB1、AB、B1C1的中點(diǎn).
 
(1) 求證:面PCC1⊥面MNQ;
(2) 求證:PC1∥面MNQ。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在長(zhǎng)方體中,分別是的中點(diǎn),
的中點(diǎn),

(Ⅰ)求證:
(Ⅱ)求二面角的大小。
(Ⅲ)求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為兩個(gè)不同的平面,、為三條互不相同的直線(xiàn),
給出下列四個(gè)命題:
①若,,則;
②若,,,,則;
③若,,則;
④若、是異面直線(xiàn),,,,則
其中真命題的序號(hào)是(   )
A.①③④B.①②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直三棱柱中,為等腰直角三角形,,且,E、F分別為、BC的中點(diǎn)。

(1)求證:;
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知m,n是兩條直線(xiàn),α,β是兩個(gè)平面.有以下命題:
①m,n相交且都在平面α,β外,m∥α, m∥β , n∥α, n∥β ,則α∥β;
②若m∥α, m∥β , 則α∥β;
③若m∥α, n∥β , m∥n,則α∥β.
其中正確命題的個(gè)數(shù)是(     )
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案