【題目】過△ABC所在平面α外一點P,作PO⊥α,垂足為O,連接PA,PB,PC,若點O是△ABC的內(nèi)心,則( )
A.PA=PB=PC
B.點P到AB,BC,AC的距離相等
C.PA⊥PB,PB⊥PC,PC⊥PA
D.PA,PB,PC與平面α所成的角相等
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是橢圓 的長軸與短軸的一個端點, 分別是橢圓的左、右焦點, 橢圓上的一點, 的周長為.
(1)求橢圓的方程;
(2)若是圓上任一點,過點作橢圓的切線,切點分別為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在半徑為的半圓形鐵皮上截取一塊矩形材料ABCD(點A、B在直徑上,點C、D在半圓周上),并將其卷成一個以AD為母線的圓柱體罐子的側(cè)面(不計剪裁和拼接損耗),
(1)若要求圓柱體罐子的側(cè)面積最大,應(yīng)如何截。
(2)若要求圓柱體罐子的體積最大,應(yīng)如何截取?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面為平行四邊形,M為PC中點.
(1)求證:BC∥平面PAD;
(2)求證:AP∥平面MBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD,其三視圖和直觀圖如圖所示,E為BC中點. (Ⅰ)求此幾何體的體積;
(Ⅱ)求證:平面PAE⊥平面PDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2cosx(sinx﹣cosx)+1,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移 個單位后,再將圖象上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的最大值及取得最大值時的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1≤x≤5},B={x|log2x>1}
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|2a﹣1≤x≤a+1},若CA,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com