拋物線y2=2px(p>0)的焦點(diǎn)為F,過F作直線AB垂直于x軸,與拋物線交于點(diǎn)A、B,O是坐標(biāo)原點(diǎn),若
OA
OB
=-
3
4
,則△AOB的面積為(  )
A、4
B、2
C、1
D、
1
2
考點(diǎn):拋物線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:直線AB的方程為x=
p
2
,代入拋物線方程,求出A,B的坐標(biāo),再利用
OA
OB
=-
3
4
,求出p的值,即可求出△AOB的面積.
解答: 解:直線AB的方程為x=
p
2
,代入拋物線方程可得y=±p,則A(
p
2
,p),B(
p
2
,-p),
所以
OA
OB
=
p2
4
-p2=-
3
4
,故p=1,
則△AOB的面積為
1
2
p
2
•2p=
p2
2
=
1
2

故選:D
點(diǎn)評:本題考查了拋物線與直線的位置關(guān)系,考查三角形面積的計算,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平移雙曲線x2-3y2+2x-2=0,把它的中心移到右焦點(diǎn)處,此時的雙曲線漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將下列不等式(組)所表示的區(qū)域標(biāo)記在平面直角坐標(biāo)系內(nèi):
(1)2x-y>1
(2)
x+y-1>0
x-y+1>0
x<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2
6
,sinA=
2
2
3
AB
AC
=-3
(Ⅰ)求b和c,
(Ⅱ)求sin(A-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x=(x-2)(|x-2|-2)+2.
(1)若函數(shù)f(x)的定義域和值域均為[1,a],求實(shí)數(shù)a的值;
(2)對任意的x1、x2∈[1,a],總有|f(x1)-f(x2)|≤3,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)滿足f(0)=6,f(x+1)=f(x)+4x
(1)求f(x)的解析式;
(2)令g(x)=
1
2
f(|x|)+m(m∈R),若g(x)有4個零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
25
+
y2
9
=1的右焦點(diǎn)是雙曲線
x2
a2
-
y2
9
=1的右頂點(diǎn),則雙曲線的漸近線為( 。
A、y=±
4
5
x
B、y=±
3
5
x
C、y=±
3
4
x
D、y=±
4
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知幾何體的三視圖(單位:cm).
(1)在這個幾何體的直觀圖相應(yīng)的位置標(biāo)出字母A,B,C,D,A1,B1,C1,D1,P,Q;
(2)求這個幾何體的表面積及體積;
(3)設(shè)異面直線A1Q、PD所成角為θ,求cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某潛艇為躲避反潛飛機(jī)的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機(jī)的偵查.試畫出潛艇整個過程的位移示意圖.

查看答案和解析>>

同步練習(xí)冊答案