【題目】已知雙曲線 =1(a>0,b>0)的左、右焦點分別為F1、F2 , 過點F1且垂直于x軸的直線與該雙曲線的左支交于A、B兩點,AF2、BF2分別交y軸于P、Q兩點,若△PQF2的周長為12,則ab取得最大值時該雙曲線的離心率為(
A.
B.
C.2
D.

【答案】D
【解析】解:由題意,△ABF2的周長為24,

∵|AF2|+|BF2|+|AB|=24,

∵|AF2|+|BF2|﹣|AB|=4a,|AB|= ,

=24﹣4a,∴b2=a(6﹣a),

∴y=a2b2=a3(6﹣a),∴y′=2a2(9﹣2a),

0<a<4.5,y′>0,a>4.5,y′<0,

∴a=4.5時,y=a2b2取得最大值,此時ab取得最大值,b= ,

∴c=3

∴e= = ,

故選:D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , a1=a, ,an+2=an+1﹣an , S56=6,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)解不等式:|2x﹣1|﹣|x|<1;
(2)設(shè)a2﹣2ab+5b2=4對a,b∈R成立,求a+b的最大值及相應(yīng)的a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,sinB+ sin =1﹣cosB.
(1)求角B的大小;
(2)求sinA+cosC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x(lnx﹣ax)(a∈R)在區(qū)間(0,2)上有兩個極值點,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ ]時f(x)的值域;
(2)在△ABC中,角A、B、C所對的邊為a,b,c,且角C為銳角,SABC= ,c=2,f(C+ )= .求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓E的左右頂點分別為A、B,左右焦點分別為F1、F2 , |AB|=4,|F1F2|=2 ,直線y=kx+m(k>0)交橢圓于C、D兩點,與線段F1F2及橢圓短軸分別交于M、N兩點(M、N不重合),且|CM|=|DN|.

(Ⅰ)求橢圓E的離心率;
(Ⅱ)若m>0,設(shè)直線AD、BC的斜率分別為k1、k2 , 求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知sinα=﹣ ,tan(α+β)=﹣3,π<α< ,0<β<π.
(Ⅰ)求tanβ;
(Ⅱ)求2α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(1)當(dāng) 時,求 的最小值;
(2)若對 ,都有 ,求 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案