【題目】已知函數(shù).
(1)若曲線在點處的切線方程為,求實數(shù)的值;
(2)若函數(shù)存在兩個零點,求實數(shù)的取值范圍.
【答案】(1);(2)
【解析】
(1)直接根據(jù)切點處的導(dǎo)數(shù)值等于切線的斜率求解;
(2)變形為方程有兩個實數(shù)根;轉(zhuǎn)化為直線與函數(shù)的圖象有兩個交點;分析函數(shù)的圖象,從而求解.
解:(1)因為,
得
所以.
因為曲線在點處的切線方程為,
所以,
即,
(2)存在兩個零點,
即方程有兩個根,
也即直線與函數(shù)的圖像有兩個交點,
記,
由,
由或,
故在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,
且,時,
又直線過,斜率為,
大致畫出圖象(如下圖),觀察圖象知:
當(dāng)時,直線與的圖象必有兩個交點,
當(dāng)時直線與的圖象只有一個交點,
綜上,函數(shù)存在兩個零點,實數(shù)的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若函數(shù),討論的單調(diào)性;
(Ⅱ)若函數(shù)的導(dǎo)數(shù)的兩個零點從小到大依次為,,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)若射線的極坐標(biāo)方程為().設(shè)與相交于點,與相交于點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )
A.28B.56C.84D.120
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】惠州市某商店銷售某海鮮,經(jīng)理統(tǒng)計了春節(jié)前后50天該海鮮的日需求量(,單位:公斤),其頻率分布直方圖如下圖所示.該海鮮每天進貨1次,每銷售1公斤可獲利40元;若供大于求,剩余的海鮮削價處理,削價處理的海鮮每公斤虧損10元;若供不應(yīng)求,可從其它商店調(diào)撥,調(diào)撥的海鮮銷售1公斤可獲利30元.假設(shè)商店該海鮮每天的進貨量為14公斤,商店銷售該海鮮的日利潤為元.
(1)求商店日利潤關(guān)于日需求量的函數(shù)表達(dá)式.
(2)根據(jù)頻率分布直方圖,
①估計這50天此商店該海鮮日需求量的平均數(shù).
②假設(shè)用事件發(fā)生的頻率估計概率,請估計日利潤不少于620元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線的切線方程為,求實數(shù)的值;
(2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列給出四個結(jié)論:
①的最大值為2;
②在區(qū)間上的單調(diào)增區(qū)間是;
③在中,若,則;
④將曲線向左平移個單位,得到函數(shù)的圖象,再將曲線
所有點的縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍(橫坐標(biāo)不變),得到函數(shù)的導(dǎo)數(shù)的圖象.其中正確的是_______________(填寫所有正確結(jié)論的編號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某精密儀器生產(chǎn)車間每天生產(chǎn)個零件,質(zhì)檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認(rèn)為該零件是合格的,否則該零件不合格.
(1)假設(shè)某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學(xué)期望;
(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當(dāng)天生產(chǎn)零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設(shè)充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.
附:若隨機變量服從正態(tài)分布,則.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com