設(shè)集合A={x|a≤x≤a+2},集合B={x|x<-1或x>3},分別就下列條件求實數(shù)a的取值范圍:
(1)A∩B=A.
(2)A∩B≠∅.
考點:交集及其運算
專題:集合
分析:(1)由A∩B=A,得A⊆B,從而a+2<-1或a>3,由此能求出實數(shù)a的取值范圍.
(2)由A∩B≠∅,a<-1或a+2>3,由此能求出實數(shù)a的取值范圍.
解答: 解:(1)∵A={x|a≤x≤a+2},集合B={x|x<-1或x>3},A∩B=A,
∴A⊆B,
∴a+2<-1或a>3,
∴a<-3或a>3.
(2)∵A∩B≠∅,
∴a<-1或a+2>3,
解得a<-1或a>1.
點評:本題考查實數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時要認真審題,注意交集的性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
tanx(x≥0)
lg(-x)(x<0)
,則f(
π
4
)•f(-100)=(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)G(x)=(1+
2
2x-1
)•g(x)(x≠0)為偶函數(shù),則函數(shù)g(x)的奇偶性為( 。
A、奇函數(shù)
B、偶函數(shù)
C、既是奇函數(shù)又是偶函數(shù)
D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-3,g(x)=x2,F(xiàn)(x)=(1-m)f(x)+mg(x)+
1
m
(m>0).
(1)求集合A={x|f(x)+g(x)>0};
(2)是否在正數(shù)m,使得當(dāng)x∈A時,F(xiàn)(x)的最小值為3?若存在,求出m的值;若不存在,說明理由;
(3)設(shè)全集U=R,若集合{x|F(x)=0,x∈∁UA}≠∅,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域為R的函數(shù)y=f(x),若對任意兩個不相等的實數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),則稱函數(shù)為“H函數(shù)”,現(xiàn)給出如下函數(shù):
①y=-x3+x+1②y=3x-2(sinx-cosx)③y=ex+1④f(x)=
ln|x|,x≠0
0,x=0

其中為“H函數(shù)”的有( 。
A、①②B、③④C、②③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)的離心率等于
3
2
,點P(2,
3
)在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點分別為A,B,過點Q(2,0)的動直線l與橢圓C相交于M,N兩點,是否存在定直線l′:x=t,使得l′與AN的交點G總在直線BM上?若存在,求出一個滿足條件的t值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+2且sinα,sin(α+
π
3
)是函數(shù)y=f(x)-
11
2
x-
3
2
的兩個零點,其中α∈(0,
π
2
).
(1)求a的值;
(2)若g(x)=2ex(x+1)對任意x≥-2,f(x)≤kg(x)恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=3tan60°,b=log 
1
3
cos60°,c=log2tan30°,則( 。
A、a>b>c
B、b>c>a
C、c>b>a
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

6.若s1=
π
2
0
cosxdx,s2=
2
 
1
1
x
dx,s3=
2
 
1
exdx 則s1,s2,s3的大小關(guān)系是( 。
A、s2<s1<s3
B、s1<s2<s3
C、s2<s3<s1
D、s3<s2<s1

查看答案和解析>>

同步練習(xí)冊答案