曲線y=-x3+x2在點(1,0)處的切線的傾斜角為( 。
分析:求導函數(shù),可得在點(1,0)處的切線的斜率,從而可求切線的傾斜角.
解答:解:∵y=-x3+x2,
∴y′=-3x2+2x,
x=1時,y′=-1.
∵tan135°=-1,
∴曲線y=-x3+x2在點(1,0)處的切線的傾斜角為135°.
故選D.
點評:本題考查導數(shù)知識的運用,考查導數(shù)的幾何意義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

曲線y=x3-x2在點P(2,4)處的切線方程為
8x-y-12=0
8x-y-12=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求曲線y=-x3+x2+2x與x軸所圍成的圖形的面積為
37
12
37
12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=-x3+x2+2x與x軸所圍成圖形的面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•連云港二模)求曲線y=-x3+x2+2x與x軸所圍成的圖形的面積.

查看答案和解析>>

同步練習冊答案