【題目】已知函數(shù)
(1)求的極值;
(2)請(qǐng)?zhí)詈孟卤?在答卷),并畫(huà)出的圖象(不必寫(xiě)出作圖步驟);
(3)設(shè)函數(shù)的圖象與軸有兩個(gè)交點(diǎn),求的值。
【答案】(1)見(jiàn)解析(2)當(dāng)時(shí)有極大值7, 當(dāng)時(shí)有極小值-20(3)
【解析】試題分析:(1)求導(dǎo)數(shù),解方程求出函數(shù)定義域內(nèi)的所有根;列表檢查在的根左右兩側(cè)值的符號(hào),如果左正右負(fù)(左增右減),那么在處取極大值,如果左負(fù)右正(左減右增),那么在處取極小值;(2)直接將表格中數(shù)據(jù)代入解析式,然后描點(diǎn)、連線(xiàn)即可;(3)由(1)知當(dāng)時(shí)有極大值, 當(dāng)時(shí)有極小值,可得函數(shù)的圖象與軸有兩個(gè)交點(diǎn)時(shí), 或.
試題解析:(1),令得-(2分)
由表知,當(dāng)時(shí)有極大值7, 當(dāng)時(shí)有極小值-20.
(2)
畫(huà)對(duì)圖
(3)由(1)知當(dāng)時(shí)有極大值, 當(dāng)時(shí)有極小值,
再由(2)知,當(dāng)的極大值或極小值為0時(shí),函數(shù)的圖象與軸有兩個(gè)交點(diǎn),即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究機(jī)構(gòu)對(duì)高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計(jì)分析,得下表數(shù)據(jù):
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請(qǐng)?jiān)趫D中畫(huà)出上表數(shù)據(jù)的散點(diǎn)圖;
請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線(xiàn)性回歸方程;
試根據(jù)求出的線(xiàn)性回歸方程,預(yù)測(cè)記憶力為9的同學(xué)的判斷力.
相關(guān)公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)擲兩枚質(zhì)地均勻的骰子,它們向上的點(diǎn)數(shù)之和不超過(guò)5的概率記為p1,點(diǎn)數(shù)之和大于5的概率記為p2,點(diǎn)數(shù)之和為偶數(shù)的概率記為p3,則
( )
A. p1<p2<p3 B. p2<p1<p3 C. p1<p3<p2 D. p3<p1<p2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,已知三點(diǎn)O(0,0),A(2, ),B(2 , ).
(1)求經(jīng)過(guò)O,A,B的圓C1的極坐標(biāo)方程;
(2)以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,圓C2的參數(shù)方程為 (θ是參數(shù)),若圓C1與圓C2外切,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=x2+|x﹣m|(m為實(shí)數(shù))是偶函數(shù),記a=f( e),b=f(log3π),c=f(em)(e為自然對(duì)數(shù)的底數(shù)),則a,b,c的大小關(guān)系( )
A.a<b<c
B.a<c<b
C.c<a<b
D.c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),且在處的切線(xiàn)斜率為.
(1)求的值,并討論在上的單調(diào)性;
(2)設(shè)函數(shù) ,其中,若對(duì)任意的總存在,使得成立,求的取值范圍
(3)已知函數(shù),試判斷在內(nèi)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鮮奶店每天以每瓶3元的價(jià)格從牧場(chǎng)購(gòu)進(jìn)若干瓶鮮牛奶,然后以每瓶7元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的鮮牛奶作垃圾處理.
(1)若鮮奶店一天購(gòu)進(jìn)30瓶鮮牛奶,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:瓶,)的函數(shù)解析式;
(2)鮮奶店記錄了100天鮮牛奶的日需求量(單位:瓶),繪制出如下的柱形圖(例如:日需求量為25瓶時(shí),頻數(shù)為5);
(i)若該鮮奶店一天購(gòu)進(jìn)30瓶鮮牛奶,求這100天的日利潤(rùn)(單位:元)的平均數(shù);
(ii) 若該鮮奶店一天購(gòu)進(jìn)30瓶鮮牛奶,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于100元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù) 的圖象向左平移 個(gè)單位,得到的函數(shù)圖象的對(duì)稱(chēng)中心與f(x)圖象的對(duì)稱(chēng)中心重合,則ω的最小值是( )
A.1
B.2
C.4
D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公差不為零的等差數(shù)列{an}中,a1 , a2 , a5成等比數(shù)列,且該數(shù)列的前10項(xiàng)和為100,數(shù)列{bn}的前n項(xiàng)和為Sn , 且滿(mǎn)足Sn= ,n∈N* .
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)記得數(shù)列{ }的前n項(xiàng)和為T(mén)n , 求Tn的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com