【題目】已知函數(shù),().
(Ⅰ)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;
(Ⅱ)設,若,若函數(shù)對恒成立,求實數(shù)的取值范圍.(是自然對數(shù)的底數(shù),)
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)首先確定函數(shù)定義域為,求出導數(shù);當時,可知函數(shù)單調(diào)遞增,根據(jù)可知滿足題意;當時,可求得導函數(shù)的零點;當零點可知滿足題意;當或結(jié)合函數(shù)的單調(diào)性和零點存在性定理可判斷出存在不止一個零點,不滿足題意;綜合上述情況得到結(jié)果;(Ⅱ)當時,可知,得到,滿足題意;當時,根據(jù)符號可知單調(diào)遞增,由零點存在性定理可驗證出,使得,從而得到在上單調(diào)遞減,則,不滿足題意,從而得到結(jié)果.
(Ⅰ)由題意得:定義域為,則
①當時,恒成立 在上單調(diào)遞增
又 有唯一零點,即滿足題意
②當時
當時,;當時,
即在上單調(diào)遞減,在上單調(diào)遞增
⑴當,即時,,有唯一零點,滿足題意
⑵當,即時,
又,且
,使得,不符合題意
⑶當,即時,
設,,則
在上單調(diào)遞增 ,即
又 ,使得,不符合題意
綜上所述:的取值范圍為:
(Ⅱ)由題意得:,則,
①當時,由得:恒成立
在上單調(diào)遞增
即滿足題意
②當時,恒成立 在上單調(diào)遞增
又,
,使得
當時,,即在上單調(diào)遞減
,則不符合題意
綜上所述:的取值范圍為:
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的普通方程與曲線的直角坐標方程;
(2)若與交于兩點,點的極坐標為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:經(jīng)過點,右焦點到直線的距離為.
(1)求橢圓的標準方程;
(2)定義為,兩點所在直線的斜率,若四邊形為橢圓的內(nèi)接四邊形,且,相交于原點,且,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列: 滿足: , 或1().對任意,都存在,使得.,其中 且兩兩不相等.
(I)若.寫出下列三個數(shù)列中所有符合題目條件的數(shù)列的序號;
①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2
(Ⅱ)記.若,證明: ;
(Ⅲ)若,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+1|+|x-2|.
(1)求f(x)的最小值m;
(2)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證:++≥3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著經(jīng)濟水平及個人消費能力的提升,我國居民對精神層面的追求愈加迫切,如圖是2007年到2017年我國城鎮(zhèn)居民教育、文化、服務人均消費支出同比增速的折線圖,圖中顯示2007年的同比增速為10%, 即2007年與2006年同時期比較2007年的人均消費支出費用是2006年的1.1倍.則下列表述中正確的是( )
A.2007年到2017年,同比增速的中位數(shù)約為10%
B.2007年到2017年,同比增速的極差約為12%
C.2011年我國城鎮(zhèn)居民教育、文化、服務人均消費支出的費用最高
D.2007年到2017年,我國城鎮(zhèn)居民教育、文化、服務人均消費支出的費用逐年增加
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐中,底面,,是線段上一點,且.三棱錐的各個頂點都在球表面上,過點作球的截面,若所得截面圓的面積的最大值與最小值之差為,則球的表面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長度分別為1,2,2.若(),且向量與夾角的余弦值為.
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com