【題目】在平行四邊形中,點(diǎn)作的垂線交的延長(zhǎng)線于點(diǎn),.連結(jié)于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置.如圖2.

證明:直線平面

的中點(diǎn),的中點(diǎn),且平面平面求三棱錐的體積.

【答案】(1)見解析;(2)

【解析】

1)在平面圖形內(nèi)找到,則在立體圖形中,可證.

2)解法一:根據(jù)平面平面,得到平面,得到到平面的距離,根據(jù)平面圖形求出底面平的面積,求得三棱錐的體積.

解法二找到三棱錐的體積與四棱錐的體積之間的關(guān)系比值關(guān)系,先求四棱錐的體積,從而得到三棱錐的體積.

證明:如圖1,在中,所以.所以

也是直角三角形,

,

如圖題2,所以平面.

解法一:平面平面,且平面平面 ,

平面 平面.

的中點(diǎn)為,連結(jié)

平面,即為三棱錐的高..

解法二:平面平面,且平面平面 ,

平面

平面.

的中點(diǎn),三棱錐的高等于.

的中點(diǎn),的面積是四邊形的面積的

三棱錐的體積是四棱錐的體積的

三棱錐的體積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定合格”“不合格兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:合格5分,不合格0.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下:

等級(jí)

不合格

合格

得分

頻數(shù)

6

a

24

b

1)由該題中頻率分布直方圖求測(cè)試成績(jī)的平均數(shù)和中位數(shù);

2)其他條件不變?cè)谠u(píng)定等級(jí)為合格的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測(cè)試得分低于80分的前提下,第2次抽取的測(cè)試得分仍低于80分的概率;

3)用分層抽樣的方法,從評(píng)定等級(jí)為合格不合格的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,點(diǎn)為橢圓的左、右頂點(diǎn),點(diǎn)是橢圓上一點(diǎn),且直線的傾斜角為,,已知橢圓的離心率為.

1)求橢圓的方程;

2)設(shè)為橢圓上異于的兩點(diǎn),若直線的斜率等于直線斜率的倍,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)fx)在[0,π]上的單調(diào)遞減區(qū)間;

2)在銳角△ABC的內(nèi)角A,BC所對(duì)邊為a,b,c,已知fA)=﹣1,a2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為a為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.

1)求C的普通方程和l的傾斜角;

2)設(shè)點(diǎn)lC交于A,B兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線Cy=,D為直線y=上的動(dòng)點(diǎn),過DC的兩條切線,切點(diǎn)分別為A,B.

1)證明:直線AB過定點(diǎn):

2)若以E(0)為圓心的圓與直線AB相切,且切點(diǎn)為線段AB的中點(diǎn),求四邊形ADBE的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠加工某種零件需要經(jīng)過,三道工序,且每道工序的加工都相互獨(dú)立,三道工序加工合格的概率分別為,,.三道工序都合格的零件為一級(jí)品;恰有兩道工序合格的零件為二級(jí)品;其它均為廢品,且加工一個(gè)零件為二級(jí)品的概率為.

1)求;

2)若該零件的一級(jí)品每個(gè)可獲利200元,二級(jí)品每個(gè)可獲利100元,每個(gè)廢品將使工廠損失50元,設(shè)一個(gè)零件經(jīng)過三道工序加工后最終獲利為元,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)不同的極值點(diǎn).

(Ⅰ)求實(shí)數(shù)a的取值范圍;

(Ⅱ)若對(duì)任意存在使得成立,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假定某射手每次射擊命中的概率為,且只有3發(fā)子彈.該射手一旦射中目標(biāo),就停止射擊,否則就一直獨(dú)立地射擊到子彈用完.設(shè)耗用子彈數(shù)為X,求:

1)目標(biāo)被擊中的概率;

2X的概率分布列;

3)均值,方差VX).

查看答案和解析>>

同步練習(xí)冊(cè)答案