11.鈍角△ABC中,(2sinC-1)•sin2A=sin2C-sin2B,則sin(A-B)=( 。
A.0B.$\frac{1}{2}$C.-$\frac{1}{2}$D.1

分析 由已知及正弦定理,余弦定理整理可得ccosB=asinC,又由正弦定理解得sin($\frac{π}{2}$-B)=sinA,可得$\frac{π}{2}$-B=A,或$\frac{π}{2}$-B+A=π,分類討論可求A-B=$\frac{π}{2}$,利用特殊角的三角函數(shù)值即可求值得解.

解答 解:∵(2sinC-1)•sin2A=sin2C-sin2B,
∴由正弦定理可得:2sinC=$\frac{{c}^{2}-^{2}}{{a}^{2}}$+1=$\frac{{c}^{2}+{a}^{2}-^{2}}{{a}^{2}}$,
∴由余弦定理可得:2a2sinC=2accosB,可得:ccosB=asinC,
又∵由正弦定理可得:asinC=csinA,可得:ccosB=csinA,解得:cosB=sinA,即:sin($\frac{π}{2}$-B)=sinA,
∴$\frac{π}{2}$-B=A,或$\frac{π}{2}$-B+A=π,
∵當(dāng)$\frac{π}{2}$-B=A時(shí),可得:$\frac{π}{2}$=B+A,C=π-(A+B)=$\frac{π}{2}$,三角形為直角三角形,與已知矛盾;
∴$\frac{π}{2}$-B+A=π,即:A-B=$\frac{π}{2}$,
∴sin(A-B)=1.
故選:D.

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,特殊角的三角函數(shù)值在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想和分類討論思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知$a={log_2}9-{log_2}\sqrt{3},b=1+{log_2}\sqrt{7},c=\frac{1}{2}+{log_2}\sqrt{13}$,則( 。
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{{2{e^x}}}{x}$.
(1)若曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程為ax-y=0,求x0的值;
(2)當(dāng)x>0時(shí),求證:f(x)>2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若tan($\frac{π}{4}$+α)=-2,則$\frac{sin2α}{{{{cos}^2}α}}$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一元二次不等式x2+ax+1>0的解集為R的必要不充分條件是( 。
A.-2≤a≤2B.-2<a<2C.0<a<2D.-2<a<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.對(duì)棱柱而言,下列說(shuō)法正確的序號(hào)是①③.
①有兩個(gè)平面互相平行,其余各面都是平行四邊形.
②所有的棱長(zhǎng)都相等.
③棱柱中至少有2個(gè)面的形狀完全相同.
④相鄰兩個(gè)面的交線叫做側(cè)棱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在復(fù)平面內(nèi)復(fù)數(shù)z滿足3+4i=(1-i)z (i 是虛數(shù)單位),則復(fù)數(shù)z 的對(duì)應(yīng)點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.x-2y=2變成直線2x′-y′=4的伸縮變換為$\begin{array}{l}\left\{\begin{array}{l}{x^'}=x\\{y^'}=4y\end{array}\right.\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知α∈(-$\frac{π}{3}$,$\frac{2π}{3}$),tan(α-$\frac{π}{6}$)=-2,則sinα=( 。
A.$\frac{{\sqrt{5}-2\sqrt{15}}}{10}$B.$\frac{{\sqrt{5}+2\sqrt{15}}}{10}$C.$\frac{{\sqrt{15}+2\sqrt{5}}}{10}$D.$\frac{{\sqrt{15}-2\sqrt{5}}}{10}$

查看答案和解析>>

同步練習(xí)冊(cè)答案