17.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,且,|$\overrightarrow{a}$|=m,|$\overrightarrow$|=2m(m≠0),若$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow$),則λ=( 。
A.1B.-1C.2D.-2

分析 根據(jù)平面向量數(shù)量積的定義,列出方程求出λ的值.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow$的夾角為120°,
且|$\overrightarrow{a}$|=m,|$\overrightarrow$|=2m(m≠0),$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow$),
∴$\overrightarrow{a}$•($\overrightarrow{a}$-λ$\overrightarrow$)=${\overrightarrow{a}}^{2}$-λ$\overrightarrow{a}•\overrightarrow$=0,
即m2-λm×2m×cos120°=0,
解得λ=-1.
故選:B.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=a(x-1).
(Ⅰ)當(dāng)a=1時(shí),解不等式|f(x)|+|f(-x)|≥3x;
(Ⅱ)設(shè)|a|≤1,當(dāng)|x|≤1時(shí),求證:$|f({x^2})+x|≤\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an+2Sn•Sn-1=0(n≥2),a1=$\frac{1}{2}$.
(1)求證:{$\frac{1}{Sn}$}是等差數(shù)列;
(2)若${b_n}=\frac{2^n}{s_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.圓心在x軸上,半徑為2,且過點(diǎn)(1,2)的圓的方程為( 。
A.(x-1)2+y2=4B.(x-2)2+y2=4C.x2+(y-1)2=4D.(x-1)2+(y-4)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\overrightarrow{OA}=(1,1,0)$,$\overrightarrow{OB}=(4,1,0)$,$\overrightarrow{OC}=(4,5,-1)$,則向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的夾角的余弦值為( 。
A.$\frac{{\sqrt{26}}}{26}$B.$\frac{{\sqrt{26}}}{12}$C.$\frac{{3\sqrt{26}}}{26}$D.$\frac{{2\sqrt{26}}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)過點(diǎn)A(1,m),B為拋物線的準(zhǔn)線與x軸的交點(diǎn),若|AB|=2$\sqrt{2}$.
(1)求拋物線的方程;
(2)在拋物線上任取一點(diǎn)P(x0,y0),過點(diǎn)P作兩條直線分別與拋物線另外相交于點(diǎn)M和點(diǎn)N,連接MN,若直線PM,PN,MN的斜率都存在且不為零,設(shè)其斜率分別為k1,k2,k3,求證:$\frac{1}{k_1}+\frac{1}{k_2}-\frac{1}{k_3}=\frac{y_0}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知θ是第一象限角,且$cosθ=\frac{{\sqrt{10}}}{10}$,則$\frac{cos2θ}{{sin2θ+co{s^2}θ}}$的值是(  )
A.$\frac{8}{7}$B.$-\frac{8}{7}$C.$\frac{10}{7}$D.$-\frac{10}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.函數(shù) y=2sin(2x+$\frac{π}{3}$)的圖象,可由函數(shù)y=sinx 的圖象怎樣變換得到?并畫出圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的半焦距為c(c>0),左焦點(diǎn)為F,右頂點(diǎn)為A,拋物線${y^2}=\frac{15}{8}(a+c)x$與橢圓交于M,N兩點(diǎn),若四邊形AMFN是菱形,則橢圓的離心率是(  )
A.$\frac{8}{15}$B.$\frac{4}{15}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案