【題目】已知函數(shù),.

(1)若,求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.

【答案】(1); (2).

【解析】

1)根據(jù)題意轉(zhuǎn)化為的最小值小于等于9,二次函數(shù)根據(jù)軸與區(qū)間的關(guān)系進(jìn)行分類討論,得到答案.(2)利用導(dǎo)數(shù)求出的極小值和極大值,并且得到 的關(guān)系,以及 的關(guān)系,表示出消去,然后令,將轉(zhuǎn)化成關(guān)于的函數(shù),注意的取值范圍,從而求出的范圍.

(1)因?yàn)?/span>

所以函數(shù)的最小值小于等于9.

(i)函數(shù)的對(duì)稱軸為,當(dāng),即時(shí),

,得,

因?yàn)?/span>,所以;

(ii)當(dāng),即時(shí),

,得.

綜上,實(shí)數(shù)的取值范圍為.

(2)因?yàn)?/span>,所以.

設(shè),因?yàn)?/span>,

所以函數(shù)有兩個(gè)不同的零點(diǎn),不妨設(shè)為,,且,

.

當(dāng)時(shí),,函數(shù)為單調(diào)遞減函數(shù);

當(dāng)時(shí),,函數(shù)為單調(diào)遞增函數(shù);

當(dāng)時(shí),,函數(shù)為單調(diào)遞減函數(shù).

所以當(dāng)時(shí),函數(shù)取得極小值,當(dāng)時(shí),函數(shù)取得極大值,

所以

,,所以.

代入,得,

設(shè),則 ,

所以.

設(shè),,則

所以函數(shù)上為單調(diào)減函數(shù),

從而,

,當(dāng)時(shí),,所以,

.

的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】影響消費(fèi)水平的原因很多,其中重要的一項(xiàng)是工資收入.研究這兩個(gè)變量的關(guān)系的一個(gè)方法是通過隨機(jī)抽樣的方法,在一定范圍內(nèi)收集被調(diào)查者的工資收入和他們的消費(fèi)狀況.下面的數(shù)據(jù)是某機(jī)構(gòu)收集的某一年內(nèi)上海、江蘇、浙江、安徽、福建五個(gè)地區(qū)的職工平均工資與城鎮(zhèn)居民消費(fèi)水平(單位:萬元).

地區(qū)

上海

江蘇

浙江

安徽

福建

職工平均工資

9.8

6.9

6.4

6.2

5.6

城鎮(zhèn)居民消費(fèi)水平

6.6

4.6

4.4

3.9

3.8

(1)利用江蘇、浙江、安徽三個(gè)地區(qū)的職工平均工資和他們的消費(fèi)水平,求出線性回歸方程,其中;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過1萬,則認(rèn)為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?(的結(jié)果保留兩位小數(shù))

(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著社會(huì)的進(jìn)步,經(jīng)濟(jì)的發(fā)展,道路上的汽車越來越多,隨之而來的交通事故也增多.據(jù)有關(guān)部門調(diào)查,發(fā)生車禍的駕駛員中尤其是21 歲以下年輕人所占比例居高,因此交通管理有關(guān)部門,對(duì)2018 年參加駕照考試的21 歲以下學(xué)員隨機(jī)抽取10 名學(xué)員,對(duì)他們參加的科目三(道路駕駛)和科目四(安全文明駕駛相關(guān)知識(shí))進(jìn)行兩輪現(xiàn)場(chǎng)測(cè)試,并把兩輪測(cè)試成績(jī)的平均分作為該名學(xué)員的抽測(cè)成績(jī).記錄的數(shù)據(jù)如下:

(1)從2018年參加駕照考試的21歲以下學(xué)員中隨機(jī)選取一名學(xué)員,試估計(jì)這名學(xué)員抽測(cè)成績(jī)大于或等于90分的概率;

(2)根據(jù)規(guī)定,科目三和科目四測(cè)試成績(jī)均達(dá)到90分以上(含90)才算測(cè)試合格.

(i)從抽測(cè)的1號(hào)至5號(hào)學(xué)員中任取兩名學(xué)員,記為學(xué)員測(cè)試合格的人數(shù),求的分布列和數(shù)學(xué)期望 ;

(ii) 記抽取的10名學(xué)員科目三和科目四測(cè)試成績(jī)的方差分別為,,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信運(yùn)動(dòng)是由騰訊開發(fā)的一個(gè)類似計(jì)步數(shù)據(jù)庫(kù)的公眾賬號(hào),很多手機(jī)用戶加入微信運(yùn)動(dòng)后,為了讓自己的步數(shù)能領(lǐng)先于朋友,運(yùn)動(dòng)的積極性明顯增強(qiáng).微信運(yùn)動(dòng)公眾號(hào)為了解用戶的一些情況,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取了100名用戶,統(tǒng)計(jì)了他們某一天的步數(shù),數(shù)據(jù)整理如下:

萬步

5

20

50

18

3

3

1

(Ⅰ)根據(jù)表中數(shù)據(jù),在如圖所示的坐標(biāo)平面中作出其頻率分布直方圖,并在縱軸上標(biāo)明各小長(zhǎng)方形的高;

(Ⅱ)若視頻率分布為概率分布,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取3人,求至少2人步數(shù)多于1.2萬步的概率;

(Ⅲ)若視頻率分布為概率分布,在微信運(yùn)動(dòng)用戶中隨機(jī)抽取2人,其中每日走路不超過0.8萬步的有人,超過1.2萬步的有人,設(shè),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,側(cè)面底面為棱的中點(diǎn),為棱上任意一點(diǎn),且不與點(diǎn)、點(diǎn)重合.

1)求證:平面平面

2)是否存在點(diǎn)使得平面與平面所成的角的余弦值為?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程和的直角坐標(biāo)方程;

(2)已知曲線的極坐標(biāo)方程為,,,點(diǎn)是曲線的交點(diǎn),點(diǎn)是曲線的交點(diǎn),且,均異于原點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某學(xué)校高一數(shù)學(xué)興趣小組對(duì)學(xué)生每周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀(體育成績(jī)滿分100分,不低于85分稱優(yōu)秀)人數(shù)之間的關(guān)系進(jìn)行分析研究,他們從本校初二,初三,高一,高二,高三年級(jí)各隨機(jī)抽取了40名學(xué)生,記錄并整理了這些學(xué)生周平均體育鍛煉小時(shí)數(shù)與體育成績(jī)優(yōu)秀人數(shù),得到如下數(shù)據(jù)表:

初二

初三

高一

高二

高三

周平均體育鍛煉小時(shí)數(shù)工(單位:小時(shí))

14

11

13

12

9

體育成績(jī)優(yōu)秀人數(shù)y(單位:人)

35

26

32

26

19

該興趣小組確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)若選取的是初三,高一,高二的3組數(shù)據(jù),請(qǐng)根據(jù)這3組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差均不超過1,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得到的線性回歸方程是否可靠?

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)

(Ⅰ)若求不等式的解集

(Ⅱ)若不等式的解集非空,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)偶函數(shù)和奇函數(shù)的圖象如圖所示,集合A 與集合B 的元素個(gè)數(shù)分別為a,b,若,則a+b的值可能是( )

A. 12B. 13C. 14D. 15

查看答案和解析>>

同步練習(xí)冊(cè)答案